aliss77777's picture
shortened timeout value
3a4367b
raw
history blame
19.3 kB
import os
import json
from typing import Dict
from openai import AsyncOpenAI
from openai.types.beta.threads.run import Run
from openai.types.beta import Thread
from openai.types.beta.threads import (
ImageFileContentBlock,
TextContentBlock,
Message,
)
import chainlit as cl
from typing import Optional
from chainlit.context import context
import assistant_tools as at
import prompts as pr
import helper_functions as hf
import datetime
import csv
from utils import DictToObject, stream_message, ask_to_continue, process_thread_message
api_key = os.environ.get("OPENAI_API_KEY")
client = AsyncOpenAI(api_key=api_key)
assistant_id = os.environ.get("ASSISTANT_ID")
@cl.on_chat_start
async def start_chat():
thread = await client.beta.threads.create()
cl.user_session.set("thread", thread)
await cl.Message(author="Climate Change Assistant", content=pr.welcome_message).send()
@cl.on_message
async def run_conversation(message_from_ui: cl.Message):
count = 0
thread = cl.user_session.get("thread") # type: Thread
# Add the message to the thread
init_message = await client.beta.threads.messages.create(
thread_id=thread.id, role="user", content=message_from_ui.content
)
# Send empty message to display the loader
loader_msg = cl.Message(author="Climate Change Assistant", content="")
await loader_msg.send()
# Create the run
run = await client.beta.threads.runs.create_and_poll(
thread_id=thread.id, assistant_id=assistant_id
)
message_references = {} # type: Dict[str, cl.Message]
# Periodically check for updates
#running = True
while True:
print('starting while True loop')
print(run)
run = await client.beta.threads.runs.retrieve(
thread_id=thread.id, run_id=run.id
)
# Fetch the run steps
run_steps = await client.beta.threads.runs.steps.list(
thread_id=thread.id, run_id=run.id, order="asc"
)
for step in run_steps.data:
# Fetch step details
run_step = await client.beta.threads.runs.steps.retrieve(
thread_id=thread.id, run_id=run.id, step_id=step.id
)
step_details = run_step.step_details
# Update step content in the Chainlit UI
if step_details.type == "message_creation":
thread_message = await client.beta.threads.messages.retrieve(
message_id=step_details.message_creation.message_id,
thread_id=thread.id,
)
await process_thread_message(message_references, thread_message)
print("line 116 about the call the tools call loop")
count += 1
print(str(count))
if step_details.type == "tool_calls":
loading_message = "Retrieving information, please stand by."
loading_message_to_assistant = cl.Message(author="Climate Change Assistant", content=loading_message)
await loading_message_to_assistant.send() # output_message_to_assistant.send()
for tool_call in step_details.tool_calls:
print('top of tool call loop line 119')
# IF tool call is a disctionary, convert to object
if isinstance(tool_call, dict):
print("here is a tool call at line 120")
print(tool_call)
tool_call = DictToObject(tool_call)
if tool_call.type == "function":
function = DictToObject(tool_call.function)
tool_call.function = function
if tool_call.type == "code_interpreter":
code_interpretor = DictToObject(tool_call.code_interpretor)
tool_call.code_interpretor = code_interpretor
print("here are step details at line 130")
print(step_details)
print("here is tool call at line 132")
print(tool_call)
if (
tool_call.type == "function"
and len(tool_call.function.arguments) > 0
):
function_name = tool_call.function.name
function_args = json.loads(tool_call.function.arguments)
if not tool_call.id in message_references:
message_references[tool_call.id] = cl.Message(
author=function_name,
content=function_args,
language="json",
#parent_id=context.session.root_message.id,
)
#await message_references[tool_call.id].send()
function_mappings = {
#"get_pf_data_handbook": at.get_pf_data_handbook,
"get_pf_data_timeline": at.get_pf_data_timeline,
}
# Not sure why, but sometimes this is returned rather than name
function_name = function_name.replace("_schema", "")
print(f"FUNCTION NAME: {function_name}")
print(function_args)
if function_name == "get_pf_data_timeline":
# Extract 'address' and 'country' values
address = function_args['address']
country = function_args['country']
units = function_args.get('units', 'C') #returns the specific value for 'units' else C if blank
print(f"Address: {address}, Country: {country}, Units: {units}")
parsed_output = at.get_pf_data_timeline(address, country, '1.5', units)
if parsed_output is not None:
print(f"RUN STATUS: {run.status} from first timeline scene")
print(run)
# creating an initial output of what life is like today in that place
output = ""
loading_message_to_assistant = cl.Message(author="Climate Change Assistant", content=pr.timeline_message)
await loading_message_to_assistant.send()
# filtering the results to just show results describing average / baseline temperatures
summary = hf.story_completion(pr.one_five_degree_prompt, units, parsed_output[parsed_output.name.str.contains("10 hottest") | parsed_output.name.str.contains("Days above 35")])
next_output = await stream_message(summary, cl)
output += next_output
print(next_output) # hf.summarizer(output)
img_content, image_bytes = hf.get_image_response_SDXL(pr.image_prompt_SDXL + address + ' ' + country) #hf.summarizer(output)
#with open('feedback_logs/73ee4d67-4857-47ec-b835-5b1cfb570b20.png', 'rb') as file:
# img_content = file.read()
img = cl.Image(content=image_bytes, name="image1", display="inline", size="large") # img_content
print('\n Generating image, complete')
image_message_to_assistant = cl.Message(author="Climate Change Assistant", content=' ', elements=[img])
await image_message_to_assistant.send()
#adding button to allow user to paginate the content
res = await ask_to_continue()
while res and res.get("value") == "question":
question = await cl.AskUserMessage(content='How can I help?', timeout=180).send()
# Use this to send the output of completion request into the next OpenAI API call.
question_response = hf.summary_completion(address, country, output, question['output'])
next_output = await stream_message(question_response, cl)
output += next_output
# Call the function again instead of duplicating the code block
res = await ask_to_continue()
warming_scenario = ['2.0', '3.0']
#inpainting_keywords = ''
for i in range(len(warming_scenario)):
print(f"RUN STATUS: {run.status} from timeline scene # {i}")
print(run)
# going to force units to be C b/c otherwise it's breaking the logic for how the 2/3 image gets displayed
parsed_output = at.get_pf_data_timeline(address, country, warming_scenario[i], 'C') #units
# filterine results to talk about change from baseline
summary = hf.story_completion(pr.timeline_prompts[i], units, parsed_output[parsed_output.name.str.contains('Change') | parsed_output.name.str.contains('Likelihood')])
next_output = await stream_message(summary, cl)
output += next_output
data_changes = parsed_output[parsed_output['name'].str.contains('Change') | parsed_output['name'].str.contains('Likelihood')].copy()
#print(data_changes)
inpainting_keywords = hf.generate_inpainting_keywords(data_changes)
img_content, image_bytes = hf.get_image_response_SDXL(prompt=pr.image_prompt_SDXL + address + ' ' + country, image_path = img_content, filtered_keywords=inpainting_keywords) #str(hf.summarizer(output))
#with open('feedback_logs/73ee4d67-4857-47ec-b835-5b1cfb570b20.png', 'rb') as file:
# img_content = file.read()
img = cl.Image(content=image_bytes, name="image1", display="inline", size="large") #img_content
print('\n generating image, complete')
image_message_to_assistant = cl.Message(author="Climate Change Assistant", content=' ', elements=[img])
await image_message_to_assistant.send()
#adding button to allow user to paginate the content
res = await ask_to_continue()
while res and res.get("value") == "question":
question = await cl.AskUserMessage(content='How can I help?', timeout=180).send()
# Use this to send the output of completion request into the next OpenAI API call.
question_response = hf.summary_completion(address, country, output, question['output'])
next_output = await stream_message(question_response, cl)
output += next_output
# Call the function again instead of duplicating the code block
res = await ask_to_continue()
#else:
# run.status = "completed"
final_message_content = hf.summary_completion(address, country, output, "Please give the user a personalized set of recommendations for how to adapt to climate change for their location and the questions they have asked (if any).")
next_output = await stream_message(final_message_content, cl)
output += next_output
# Step 1: Ask users if they'd like to offer feedback
res_want_feedback = await cl.AskActionMessage(content="Would you like to offer feedback?",
actions=[
cl.Action(name="yes", value="yes", label="βœ… Yes"),
cl.Action(name="no", value="no", label="🚫 No")],
timeout=180).send()
# Only proceed if they want to give feedback
if res_want_feedback.get("value") == "yes":
# Step 2: Ask "How was your experience?"
res_feedback = await cl.AskActionMessage(content="How was your experience?",
actions=[
cl.Action(name="good", value="good", label="πŸ˜€ Good. I'm ready to take action"),
cl.Action(name="IDK", value="IDK", label="😐 Not sure"),
cl.Action(name="no_good", value="no_good", label="πŸ™ Not good"),],
timeout=180).send()
if res_feedback.get("value") == "good":
thank_you_message = cl.Message(author="Climate Change Assistant", content="Thanks for your feedback!")
await thank_you_message.send()
# Step 3: If "no good" or "not sure," ask why
elif res_feedback.get("value") in ["no_good", "IDK"]:
res_reason = await cl.AskUserMessage(content="Could you please tell us why?").send()
# Step 4: Capture user open-ended comments and write to a CSV file // UPDATE: Literal.AI data layer handles this
#filename = f"feedback_logs/feedback_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
#with open(filename, "a", newline='') as csvfile:
# feedback_writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
# # Write column headers if the file is new/empty
# if csvfile.tell() == 0:
# feedback_writer.writerow(["Thread ID", "Feedback Value", "Reason Output"])
# # Assuming thread_id is available from earlier in your session
# thread = cl.user_session.get("thread")
# feedback_writer.writerow([thread.id, res_feedback.get('value'), res_reason['output'] if res_reason['output'] is not None else ''])
thank_you_message = cl.Message(author="Climate Change Assistant", content="Thanks for your feedback!")
await thank_you_message.send()
next_steps = cl.Message(author="Climate Change Assistant", content=pr.next_steps)
await next_steps.send()
print('here is the bottom of the if feedback block')
print(run.status)
#run.status = "completed"
print('here is the bottom of the if pf.function is not none block')
print(run.status)
#run.status = "completed"
run = await client.beta.threads.runs.submit_tool_outputs_and_poll(
thread_id=thread.id,
run_id=run.id,
tool_outputs=[
{
"tool_call_id": tool_call.id,
"output": str(parsed_output),
},
],
)
print('here is the bottom of the IF tool call is function block')
#run.status = "completed"
print(run.status)
#await cl.sleep(1) # Refresh every second
if run.status == "completed":
print(f"RUN STATUS: {run.status} from the bottom of the code")
#running = False
#run = await client.beta.threads.runs.cancel(
# thread_id=thread.id,
# run_id=run.id
# )
print(run)
break
if run.status in ["cancelled", "failed", "completed", "expired"]:
if run.status == "failed":
print('here is the failed run: ', run)
break
print('completed')