Spaces:
Runtime error
Runtime error
File size: 5,428 Bytes
2936a70 6aeedda b16a132 2936a70 6aeedda b16a132 6aeedda b16a132 2936a70 9d33cfe b16a132 2936a70 9d33cfe 2936a70 9d33cfe 2936a70 9d33cfe 2936a70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import random
import gradio as gr
import sys
import traceback
import pandas as pd
import gradio as gr
import json
import yaml
# from tqdm import tqdm
from scripts.UBAR_code.interaction import UBAR_interact
from scripts.user_model_code.interaction import multiwoz_interact
from scripts.UBAR_code.interaction.UBAR_interact import bcolors
# Initialise agents
UBAR_checkpoint_path = "epoch50_trloss0.59_gpt2"
user_model_checkpoint_path = "MultiWOZ-full_checkpoint_step340k"
sys_model = self_play_sys_model = UBAR_interact.UbarSystemModel(
"UBAR_sys_model", UBAR_checkpoint_path, "scripts/UBAR_code/interaction/config.yaml"
)
user_model = self_play_user_model = multiwoz_interact.NeuralAgent(
"user", user_model_checkpoint_path, "scripts/user_model_code/interaction/config.yaml"
)
# Get goals
n_goals = 100
goals_path = "data/raw/UBAR/multi-woz/data.json"
print("Loading goals...")
goals = multiwoz_interact.read_multiWOZ_20_goals(goals_path, n_goals)
# Initialise agent with first goal (can be incrememnted by user) for user simulator tab
curr_goal_idx = random.randint(0, n_goals - 1)
current_goal = goals[curr_goal_idx]
user_model.init_session(ini_goal=current_goal)
# Do the same initialisation but for the self-play tab
curr_sp_goal_idx = random.randint(0, n_goals - 1)
current_sp_goal = goals[curr_sp_goal_idx]
self_play_user_model.init_session(ini_goal=current_sp_goal)
# Get the responses for each agent and track conversation history
ds_history = []
us_history = []
self_play_history = []
def change_goal():
global curr_goal_idx
curr_goal_idx = random.randint(0, n_goals - 1)
current_goal = goals[curr_goal_idx]
user_model.init_session(ini_goal=current_goal)
current_goal_yaml = yaml.dump(current_goal, default_flow_style=False)
return current_goal_yaml
def change_sp_goal():
global curr_sp_goal_idx
curr_sp_goal_idx = random.randint(0, n_goals - 1)
current_sp_goal = goals[curr_sp_goal_idx]
self_play_user_model.init_session(ini_goal=current_sp_goal)
current_sp_goal_yaml = yaml.dump(current_sp_goal, default_flow_style=False)
return current_sp_goal_yaml
def ds_chatbot(user_utt):
turn_id = len(ds_history)
sys_response = sys_model.response(user_utt, turn_id)
ds_history.append((user_utt, sys_response))
return ds_history
def us_chatbot(sys_response):
user_utt = user_model.response(sys_response)
us_history.append((sys_response, user_utt))
if user_model.is_terminated():
change_goal()
return us_history
def self_play():
if len(self_play_history) == 0:
sys_response = ""
else:
sys_response = self_play_history[-1][1]
user_utt = user_model.response(sys_response)
turn_id = len(self_play_history)
sys_response = sys_model.response(user_utt, turn_id)
self_play_history.append((user_utt, sys_response))
if user_model.is_terminated():
change_goal()
return self_play_history
# Initialise demo render
block = gr.Blocks()
with block:
gr.Markdown("# Demo User Simulator and Task-Oriented Dialogue System")
gr.Markdown("*Created by Alistair McLeay, with help from Professor Bill Byrne, Andy Tseng, and Alex Coca*")
with gr.Tabs():
with gr.TabItem("Dialogue System"):
gr.Markdown(
"This bot is a Task-Oriented Dialogue Systen. You are the user. Go ahead and try to book a train, or a hotel etc."
)
with gr.Row():
ds_input_text = gr.inputs.Textbox(
label="User Message", placeholder="I'd like to book a train from Cambridge to London"
)
ds_response = gr.outputs.Chatbot(label="Dialogue System Response")
ds_button = gr.Button("Submit Message")
with gr.TabItem("User Simulator"):
gr.Markdown(
"This bot is a User Simulator. You are the Task-Oriented Dialogue System. Your job is to help the user with their requests."
)
new_goal_button = gr.Button("Generate Goal")
with gr.Row():
us_input_text = gr.inputs.Textbox(
label="Dialogue System Message", placeholder="How can I help you today?"
)
us_response = gr.outputs.Chatbot(label="User Simulator Response")
current_goal_yaml = gr.outputs.Textbox(label="Current Goal (YAML)")
us_button = gr.Button("Submit Message")
with gr.TabItem("Self-Play"):
gr.Markdown(
"In this scenario you define a goal and you then watch both agents interact where the User Simulator is trying to achieve the goal, and the Task-Oriented Dialogue System is trying to help the User Simulator do so."
)
new_sp_goal_button = gr.Button("Generate Goal")
with gr.Row():
self_play_response = gr.outputs.Chatbot(label="Self-Play Output")
current_sp_goal_yaml = gr.outputs.Textbox(label="Current Goal (YAML)")
self_play_button = gr.Button("Run Next Step")
ds_button.click(ds_chatbot, ds_input_text, ds_response)
us_button.click(us_chatbot, us_input_text, us_response)
self_play_button.click(self_play, None, self_play_response)
new_goal_button.click(change_goal, None, current_goal_yaml)
new_sp_goal_button.click(change_sp_goal, None, current_sp_goal_yaml)
block.launch(share=True)
|