alkzar90 commited on
Commit
61a9e50
1 Parent(s): 3ab53fa

Add text and fix latex formula

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -5,8 +5,9 @@ import matplotlib.pyplot as plt
5
  st.title('Fitting simple models with JAX')
6
  st.header('A quadratric regression example')
7
 
8
- st.markdown('**This is a simple text** to specify the goal of this simple data app\n.')
9
- st.latex('h(\boldsymbol x, \boldsymbol w)= \sum_{k=1}^{K}\boldsymbol w_{k} \phi_{k}(\boldsymbol x)')
 
10
 
11
  number_of_observations = st.sidebar.slider('Number of observations', min_value=50, max_value=150, value=50)
12
  noise_standard_deviation = st.sidebar.slider('Standard deviation of the noise', min_value = 0.0, max_value=2.0, value=0.25)
 
5
  st.title('Fitting simple models with JAX')
6
  st.header('A quadratric regression example')
7
 
8
+ st.markdown('*\"Parametrised models are simply functions that depend on inputs and trainable parameters. There is no fundamental difference between the two, except that trainable parameters are shared across training samples whereas the input varies from sample to sample.\"* [(Yann LeCun, Deep learning course)](https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-1/#Parametrised-models)')
9
+
10
+ st.latex(r'''h(\boldsymbol x, \boldsymbol w)= \sum_{k=1}^{K}\boldsymbol w_{k} \phi_{k}(\boldsymbol x)''')
11
 
12
  number_of_observations = st.sidebar.slider('Number of observations', min_value=50, max_value=150, value=50)
13
  noise_standard_deviation = st.sidebar.slider('Standard deviation of the noise', min_value = 0.0, max_value=2.0, value=0.25)