alkzar90 commited on
Commit
96f9a87
·
1 Parent(s): 432ab81

Add scatterplot

Browse files
Files changed (1) hide show
  1. app.py +16 -7
app.py CHANGED
@@ -2,16 +2,25 @@ import streamlit as st
2
  import numpy as np
3
  import matplotlib.pyplot as plt
4
 
5
- number_of_observations = st.slider('Number of observations', min_value=50, max_value=150)
 
 
 
 
6
  X = np.column_stack((np.ones(number_of_observations),
7
- np.random.random(number_of_observations))
8
-
 
9
 
10
- fig, ax = plt.subplots()
 
 
 
 
 
11
  ax.set_xlim((0,1))
12
  ax.set_ylim((-5,20))
13
- ax.scatter(X[:,1], y, c='r', edgecolors='#fda172')
14
- #line_thickness = 2
15
- #line, = ax.plot([], [], lw=line_thickness)
16
  st.pyplot(fig)
17
  st.write(X[:5, :])
 
2
  import numpy as np
3
  import matplotlib.pyplot as plt
4
 
5
+ number_of_observations = st.slider('Number of observations', min_value=50, max_value=150, value=50)
6
+ noise_standard_deviation = st.slider('Standard deviation of the noise', min_value = 0.0, max_value=0.5, value=0.25)
7
+
8
+ np.random.seed(2)
9
+
10
  X = np.column_stack((np.ones(number_of_observations),
11
+ np.random.random(number_of_observations)))
12
+
13
+ w = np.array([3.0, -20.0, 32.0]) # coefficients
14
 
15
+ X = np.column_stack((X, X[:,1] ** 2)) # add x**2 column
16
+ additional_noise = 8 * np.random.binomial(1, 0.03, size = number_of_observations)
17
+ y = np.dot(X, w) + noise_standard_deviation * np.random.randn(number_of_observations) \
18
+ + additional_noise
19
+
20
+ fig, ax = plt.subplots(dpi=320)
21
  ax.set_xlim((0,1))
22
  ax.set_ylim((-5,20))
23
+ ax.scatter(X[:,1], y, c='r', edgecolors='black')
24
+
 
25
  st.pyplot(fig)
26
  st.write(X[:5, :])