Spaces:
Running
Running
import pandas as pd | |
from pathlib import Path | |
from datasets import load_dataset | |
import numpy as np | |
import os | |
import re | |
UNVERIFIED_MODELS = [ | |
"nvidia/Nemotron-4-340B-Reward", | |
"nvidia/Llama3-70B-SteerLM-RM", | |
"Cohere May 2024", | |
"google/gemini-1.5-pro-0514", | |
"google/flame-24b-july-2024", | |
"Cohere March 2024", | |
"facebook/Self-taught-Llama-3-70B", | |
"facebook/Self-taught-evaluator-llama3.1-70B", | |
"google/flame-1.0-24B-july-2024", | |
"Salesforce/SFR-LLaMa-3.1-70B-Judge-r", | |
"Salesforce/SFR-nemo-12B-Judge-r", | |
"Salesforce/SFR-LLaMa-3.1-8B-Judge-r", | |
"SF-Foundation/TextEval-OffsetBias-12B", | |
"SF-Foundation/TextEval-Llama3.1-70B", | |
"nvidia/Llama-3.1-Nemotron-70B-Reward", | |
] | |
CONTAMINATED_MODELS = [ | |
"Skywork/Skywork-Reward-Gemma-2-27B", | |
"Skywork/Skywork-Critic-Llama-3.1-70B", | |
"LxzGordon/URM-LLaMa-3.1-8B", | |
"Skywork/Skywork-Reward-Llama-3.1-8B", | |
"Ray2333/GRM-Llama3-8B-rewardmodel-ft", | |
"nicolinho/QRM-Llama3.1-8B", | |
"nicolinho/QRM-Llama3-8B", | |
"general-preference/GPM-Llama-3.1-8B", | |
"general-preference/GPM-Gemma-2B", | |
"ZiyiYe/Con-J-Qwen2-7B", | |
"Ray2333/Gemma-2B-rewardmodel-ft", | |
"Ray2333/GRM-Gemma-2B-rewardmodel-ft" | |
] | |
# From Open LLM Leaderboard | |
def model_hyperlink(link, model_name): | |
# if model_name is above 50 characters, return first 47 characters and "..." | |
if len(model_name) > 50: | |
model_name = model_name[:47] + "..." | |
if model_name == "random": | |
output = "random" | |
elif model_name == "Cohere March 2024": | |
output = f'<a target="_blank" href="https://huggingface.co/Cohere" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
elif "openai" == model_name.split("/")[0]: | |
output = f'<a target="_blank" href="https://huggingface.co/openai" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
elif "Anthropic" == model_name.split("/")[0]: | |
output = f'<a target="_blank" href="https://huggingface.co/Anthropic" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
elif "google" == model_name.split("/")[0]: | |
output = f'<a target="_blank" href="https://huggingface.co/google" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
elif "PoLL" == model_name.split("/")[0]: | |
output = model_name | |
output = f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
if model_name in UNVERIFIED_MODELS: | |
output += " *" | |
if model_name in CONTAMINATED_MODELS: | |
output += " ⚠️" | |
return output | |
def undo_hyperlink(html_string): | |
# Regex pattern to match content inside > and < | |
pattern = r'>[^<]+<' | |
match = re.search(pattern, html_string) | |
if match: | |
# Extract the matched text and remove leading '>' and trailing '<' | |
return match.group(0)[1:-1] | |
else: | |
return "No text found" | |
# Define a function to fetch and process data | |
def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to pull the git repo | |
dir = Path(data_repo) | |
data_dir = dir / subdir | |
orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))] | |
# get all files within the sub folders orgs | |
models_results = [] | |
for org in orgs: | |
org_dir = data_dir / org | |
files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))] | |
for file in files: | |
if file.endswith(".json"): | |
models_results.append(org + "/" + file) | |
# create empty dataframe to add all data to | |
df = pd.DataFrame() | |
# load all json data in the list models_results one by one to avoid not having the same entries | |
for model in models_results: | |
model_data = load_dataset("json", data_files=data_repo + subdir+ "/" + model, split="train") | |
df2 = pd.DataFrame(model_data) | |
# add to df | |
df = pd.concat([df2, df]) | |
# remove chat_template comlumn | |
df = df.drop(columns=["chat_template"]) | |
# sort columns alphabetically | |
df = df.reindex(sorted(df.columns), axis=1) | |
# move column "model" to the front | |
cols = list(df.columns) | |
cols.insert(0, cols.pop(cols.index('model'))) | |
df = df.loc[:, cols] | |
# select all columns except "model" | |
cols = df.columns.tolist() | |
cols.remove("model") | |
# if model_type is a column (pref tests may not have it) | |
if "model_type" in cols: | |
cols.remove("model_type") | |
# remove ref_model if in columns | |
if "ref_model" in cols: | |
cols.remove("ref_model") | |
# remove model_beaker from dataframe | |
if "model_beaker" in cols: | |
cols.remove("model_beaker") | |
df = df.drop(columns=["model_beaker"]) | |
# remove column xstest (outdated data) | |
# if xstest is a column | |
if "xstest" in cols: | |
df = df.drop(columns=["xstest"]) | |
cols.remove("xstest") | |
if "ref_model" in df.columns: | |
df = df.drop(columns=["ref_model"]) | |
# remove column anthropic and summarize_prompted (outdated data) | |
if "anthropic" in cols: | |
df = df.drop(columns=["anthropic"]) | |
cols.remove("anthropic") | |
if "summarize_prompted" in cols: | |
df = df.drop(columns=["summarize_prompted"]) | |
cols.remove("summarize_prompted") | |
# remove pku_better and pku_safer (removed from the leaderboard) | |
if "pku_better" in cols: | |
df = df.drop(columns=["pku_better"]) | |
cols.remove("pku_better") | |
if "pku_safer" in cols: | |
df = df.drop(columns=["pku_safer"]) | |
cols.remove("pku_safer") | |
# convert to score | |
df[cols] = (df[cols]*100) | |
avg = np.nanmean(df[cols].values,axis=1) | |
# add average column | |
df["average"] = avg | |
# apply model_hyperlink function to column "model" | |
df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x)) | |
# move average column to the second | |
cols = list(df.columns) | |
cols.insert(1, cols.pop(cols.index('average'))) | |
df = df.loc[:, cols] | |
# move model_type column to first | |
if "model_type" in cols: | |
cols = list(df.columns) | |
cols.insert(1, cols.pop(cols.index('model_type'))) | |
df = df.loc[:, cols] | |
# remove models with DPO Ref. Free as type (future work) | |
df = df[~df["model_type"].str.contains("DPO Ref. Free", na=False)] | |
return df | |