Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- langchain_KB.py +0 -6
- rag_reponse_002.py +8 -8
langchain_KB.py
CHANGED
@@ -18,15 +18,9 @@ import pathlib
|
|
18 |
from pathlib import Path
|
19 |
import re
|
20 |
from re import sub
|
21 |
-
import matplotlib.pyplot as plt
|
22 |
-
from itertools import product
|
23 |
-
from tqdm import tqdm_notebook, tqdm, trange
|
24 |
import time
|
25 |
from time import sleep
|
26 |
# import pretty_errors
|
27 |
-
import seaborn as sns
|
28 |
-
from matplotlib.pyplot import style
|
29 |
-
from rich import print
|
30 |
import warnings
|
31 |
import PyPDF2
|
32 |
from openai import OpenAI
|
|
|
18 |
from pathlib import Path
|
19 |
import re
|
20 |
from re import sub
|
|
|
|
|
|
|
21 |
import time
|
22 |
from time import sleep
|
23 |
# import pretty_errors
|
|
|
|
|
|
|
24 |
import warnings
|
25 |
import PyPDF2
|
26 |
from openai import OpenAI
|
rag_reponse_002.py
CHANGED
@@ -12,18 +12,14 @@ from langchain_core.runnables import RunnableParallel
|
|
12 |
import streamlit as st
|
13 |
import re
|
14 |
import openai
|
15 |
-
from openai import OpenAI
|
16 |
import os
|
17 |
from langchain.llms.base import LLM
|
18 |
from langchain.llms.utils import enforce_stop_tokens
|
19 |
from typing import Dict, List, Optional, Tuple, Union
|
20 |
-
import requests
|
21 |
-
import json
|
22 |
# import chatgpt
|
23 |
import qwen_response
|
24 |
from dotenv import load_dotenv
|
25 |
import dashscope
|
26 |
-
# dashscope.api_key = "sk-948adb3e65414e55961a9ad9d22d186b"
|
27 |
|
28 |
load_dotenv()
|
29 |
### 设置openai的API key
|
@@ -35,11 +31,10 @@ dashscope.api_key = os.environ['dashscope_api_key']
|
|
35 |
|
36 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
37 |
|
38 |
-
embeddings = HuggingFaceEmbeddings(model_name='GanymedeNil/text2vec-large-chinese') ## 这里是联网情况下,部署在Huggingface上后使用。
|
39 |
-
|
40 |
# embeddings = OpenAIEmbeddings(disallowed_special=()) ## 这里是联网情况下,部署在Huggingface上后使用。
|
41 |
# embeddings = HuggingFaceEmbeddings(model_name='/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/RAG/bge-large-zh') ## 切换成BGE的embedding。
|
42 |
-
vector_store = FAISS.load_local("./faiss_index/", embeddings=embeddings, allow_dangerous_deserialization=True) ## 加载vector store到本地。
|
43 |
# vector_store = FAISS.load_local("./faiss_index/", embeddings=embeddings) ## 加载vector store到本地。 ### original code here.
|
44 |
|
45 |
# ## 配置ChatGLM的类与后端api server对应。
|
@@ -120,8 +115,13 @@ def rag_source(docs):
|
|
120 |
print('source:', source)
|
121 |
return source
|
122 |
|
123 |
-
def rag_response(user_input, k=3):
|
124 |
# docs = vector_store.similarity_search('user_input', k=k) ## Original。
|
|
|
|
|
|
|
|
|
|
|
125 |
docs = vector_store.similarity_search(user_input, k=k) ##TODO 'user_input' to user_input?
|
126 |
context = [doc.page_content for doc in docs]
|
127 |
# print('context: {}'.format(context))
|
|
|
12 |
import streamlit as st
|
13 |
import re
|
14 |
import openai
|
|
|
15 |
import os
|
16 |
from langchain.llms.base import LLM
|
17 |
from langchain.llms.utils import enforce_stop_tokens
|
18 |
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
|
19 |
# import chatgpt
|
20 |
import qwen_response
|
21 |
from dotenv import load_dotenv
|
22 |
import dashscope
|
|
|
23 |
|
24 |
load_dotenv()
|
25 |
### 设置openai的API key
|
|
|
31 |
|
32 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
33 |
|
34 |
+
# embeddings = HuggingFaceEmbeddings(model_name='GanymedeNil/text2vec-large-chinese') ## 这里是联网情况下,部署在Huggingface上后使用。
|
|
|
35 |
# embeddings = OpenAIEmbeddings(disallowed_special=()) ## 这里是联网情况下,部署在Huggingface上后使用。
|
36 |
# embeddings = HuggingFaceEmbeddings(model_name='/Users/yunshi/Downloads/360Data/Data Center/Working-On Task/演讲与培训/2023ChatGPT/Coding/RAG/bge-large-zh') ## 切换成BGE的embedding。
|
37 |
+
# vector_store = FAISS.load_local("./faiss_index/", embeddings=embeddings, allow_dangerous_deserialization=True) ## 加载vector store到本地。
|
38 |
# vector_store = FAISS.load_local("./faiss_index/", embeddings=embeddings) ## 加载vector store到本地。 ### original code here.
|
39 |
|
40 |
# ## 配置ChatGLM的类与后端api server对应。
|
|
|
115 |
print('source:', source)
|
116 |
return source
|
117 |
|
118 |
+
def rag_response(username, user_input, k=3):
|
119 |
# docs = vector_store.similarity_search('user_input', k=k) ## Original。
|
120 |
+
|
121 |
+
embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-large-zh-v1.5') ## 这里是联网情况下,部署在Huggingface上后使用。
|
122 |
+
# embeddings = HuggingFaceEmbeddings(model_name='GanymedeNil/text2vec-large-chinese') ## 这里是联网情况下,部署在Huggingface上后使用。
|
123 |
+
print('embeddings:', embeddings)
|
124 |
+
vector_store = FAISS.load_local(f"./{username}/faiss_index/", embeddings=embeddings, allow_dangerous_deserialization=True) ## 加载vector store到本地。
|
125 |
docs = vector_store.similarity_search(user_input, k=k) ##TODO 'user_input' to user_input?
|
126 |
context = [doc.page_content for doc in docs]
|
127 |
# print('context: {}'.format(context))
|