allknowingroger's picture
Duplicate from allknowingroger/Image-Models-Test79
a5e9acc
raw
history blame
4.54 kB
import gradio as gr
# import os
# import sys
# from pathlib import Path
import time
models =[
"stephanebhiri/lora-trained-xl-colab-hya13",
"stablediffusionapi/icon-lab-ai",
"stephanebhiri/lora-trained-xl-colab-stp17",
"Yntec/DreamLikeRemix",
"stephanebhiri/lora-trained-xl-colab-stp16",
"slakshmi/my-pet-dog-xzg",
"asfar/mmahdy",
"stablediffusionapi/jueduixianshi",
"asfar/nadasameh",
"AP123/eapt-3sn6-u0ch",
]
model_functions = {}
model_idx = 1
for model_path in models:
try:
model_functions[model_idx] = gr.Interface.load(f"models/{model_path}", live=False, preprocess=True, postprocess=False)
except Exception as error:
def the_fn(txt):
return None
model_functions[model_idx] = gr.Interface(fn=the_fn, inputs=["text"], outputs=["image"])
model_idx+=1
def send_it_idx(idx):
def send_it_fn(prompt):
output = (model_functions.get(str(idx)) or model_functions.get(str(1)))(prompt)
return output
return send_it_fn
def get_prompts(prompt_text):
return prompt_text
def clear_it(val):
if int(val) != 0:
val = 0
else:
val = 0
pass
return val
def all_task_end(cnt,t_stamp):
to = t_stamp + 60
et = time.time()
if et > to and t_stamp != 0:
d = gr.update(value=0)
tog = gr.update(value=1)
#print(f'to: {to} et: {et}')
else:
if cnt != 0:
d = gr.update(value=et)
else:
d = gr.update(value=0)
tog = gr.update(value=0)
#print (f'passing: to: {to} et: {et}')
pass
return d, tog
def all_task_start():
print("\n\n\n\n\n\n\n")
t = time.gmtime()
t_stamp = time.time()
current_time = time.strftime("%H:%M:%S", t)
return gr.update(value=t_stamp), gr.update(value=t_stamp), gr.update(value=0)
def clear_fn():
nn = len(models)
return tuple([None, *[None for _ in range(nn)]])
with gr.Blocks(title="SD Models") as my_interface:
with gr.Column(scale=12):
# with gr.Row():
# gr.Markdown("""- Primary prompt: 你想画的内容(英文单词,如 a cat, 加英文逗号效果更好;点 Improve 按钮进行完善)\n- Real prompt: 完善后的提示词,出现后再点右边的 Run 按钮开始运行""")
with gr.Row():
with gr.Row(scale=6):
primary_prompt=gr.Textbox(label="Prompt", value="")
# real_prompt=gr.Textbox(label="Real prompt")
with gr.Row(scale=6):
# improve_prompts_btn=gr.Button("Improve")
with gr.Row():
run=gr.Button("Run",variant="primary")
clear_btn=gr.Button("Clear")
with gr.Row():
sd_outputs = {}
model_idx = 1
for model_path in models:
with gr.Column(scale=3, min_width=320):
with gr.Box():
sd_outputs[model_idx] = gr.Image(label=model_path)
pass
model_idx += 1
pass
pass
with gr.Row(visible=False):
start_box=gr.Number(interactive=False)
end_box=gr.Number(interactive=False)
tog_box=gr.Textbox(value=0,interactive=False)
start_box.change(
all_task_end,
[start_box, end_box],
[start_box, tog_box],
every=1,
show_progress=False)
primary_prompt.submit(all_task_start, None, [start_box, end_box, tog_box])
run.click(all_task_start, None, [start_box, end_box, tog_box])
runs_dict = {}
model_idx = 1
for model_path in models:
runs_dict[model_idx] = run.click(model_functions[model_idx], inputs=[primary_prompt], outputs=[sd_outputs[model_idx]])
model_idx += 1
pass
pass
# improve_prompts_btn_clicked=improve_prompts_btn.click(
# get_prompts,
# inputs=[primary_prompt],
# outputs=[primary_prompt],
# cancels=list(runs_dict.values()))
clear_btn.click(
clear_fn,
None,
[primary_prompt, *list(sd_outputs.values())],
cancels=[*list(runs_dict.values())])
tog_box.change(
clear_it,
tog_box,
tog_box,
cancels=[*list(runs_dict.values())])
my_interface.queue(concurrency_count=600, status_update_rate=1)
my_interface.launch(inline=True, show_api=False)