File size: 2,619 Bytes
46442b2
 
 
 
 
 
 
 
 
 
 
9c79d3e
 
46442b2
59ea78d
d06ab60
4654be6
 
59ea78d
66b2d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46442b2
 
 
 
 
 
 
 
 
 
f495dde
e3e621c
46442b2
f495dde
46442b2
 
 
 
 
 
89070e4
66b2d34
89070e4
 
 
 
e3e621c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchaudio
import sys

import matplotlib.pyplot as plt
import IPython.display as ipd

from tqdm import tqdm
import gradio as gr
import ffmpeg

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sample_rate = 16000
new_sample_rate = 8000
transform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=new_sample_rate)

class M5(nn.Module):
    def __init__(self, n_input=1, n_output=35, stride=16, n_channel=32):
        super().__init__()
        self.conv1 = nn.Conv1d(n_input, n_channel, kernel_size=80, stride=stride)
        self.bn1 = nn.BatchNorm1d(n_channel)
        self.pool1 = nn.MaxPool1d(4)
        self.conv2 = nn.Conv1d(n_channel, n_channel, kernel_size=3)
        self.bn2 = nn.BatchNorm1d(n_channel)
        self.pool2 = nn.MaxPool1d(4)
        self.conv3 = nn.Conv1d(n_channel, 2 * n_channel, kernel_size=3)
        self.bn3 = nn.BatchNorm1d(2 * n_channel)
        self.pool3 = nn.MaxPool1d(4)
        self.conv4 = nn.Conv1d(2 * n_channel, 2 * n_channel, kernel_size=3)
        self.bn4 = nn.BatchNorm1d(2 * n_channel)
        self.pool4 = nn.MaxPool1d(4)
        self.fc1 = nn.Linear(2 * n_channel, n_output)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(self.bn1(x))
        x = self.pool1(x)
        x = self.conv2(x)
        x = F.relu(self.bn2(x))
        x = self.pool2(x)
        x = self.conv3(x)
        x = F.relu(self.bn3(x))
        x = self.pool3(x)
        x = self.conv4(x)
        x = F.relu(self.bn4(x))
        x = self.pool4(x)
        x = F.avg_pool1d(x, x.shape[-1])
        x = x.permute(0, 2, 1)
        x = self.fc1(x)
        return F.log_softmax(x, dim=2)

def get_likely_index(tensor):
    # find most likely label index for each element in the batch
    return tensor.argmax(dim=-1)
 
def index_to_label(index):
    # Return the word corresponding to the index in labels
    # This is the inverse of label_to_index
    return labels[index]
    
def predict(filepath):
    tensor=(torchaudio.backend.sox_io_backend.load(filepath))[0]
    # Use the model to predict the label of the waveform
    tensor = tensor.to(device)
    tensor = transform(tensor)
    tensor = model(tensor.unsqueeze(0))
    tensor = get_likely_index(tensor)
    tensor = index_to_label(tensor.squeeze())
    return tensor
    

    
model = torch.load('export.pkl',map_location=torch.device('cpu'))

  
      
gr.Interface(fn=predict, inputs=gr.inputs.Audio(source='microphone'), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)