AlejandroMolina commited on
Commit
2fe7e34
1 Parent(s): 90ceb17

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -2
app.py CHANGED
@@ -70,6 +70,51 @@ def predict(filepath):
70
  tensor = index_to_label(tensor.squeeze())
71
  return tensor
72
 
73
- model = torch.load('export.pkl',map_location=torch.device('cpu'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
- gr.Interface(fn=predict, inputs=gr.inputs.Audio(source='microphone',type='filepath'), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)
 
 
 
 
 
70
  tensor = index_to_label(tensor.squeeze())
71
  return tensor
72
 
73
+ def record(seconds=1):
74
+
75
+ from google.colab import output as colab_output
76
+ from base64 import b64decode
77
+ from io import BytesIO
78
+ from pydub import AudioSegment
79
+
80
+ RECORD = (
81
+ b"const sleep = time => new Promise(resolve => setTimeout(resolve, time))\n"
82
+ b"const b2text = blob => new Promise(resolve => {\n"
83
+ b" const reader = new FileReader()\n"
84
+ b" reader.onloadend = e => resolve(e.srcElement.result)\n"
85
+ b" reader.readAsDataURL(blob)\n"
86
+ b"})\n"
87
+ b"var record = time => new Promise(async resolve => {\n"
88
+ b" stream = await navigator.mediaDevices.getUserMedia({ audio: true })\n"
89
+ b" recorder = new MediaRecorder(stream)\n"
90
+ b" chunks = []\n"
91
+ b" recorder.ondataavailable = e => chunks.push(e.data)\n"
92
+ b" recorder.start()\n"
93
+ b" await sleep(time)\n"
94
+ b" recorder.onstop = async ()=>{\n"
95
+ b" blob = new Blob(chunks)\n"
96
+ b" text = await b2text(blob)\n"
97
+ b" resolve(text)\n"
98
+ b" }\n"
99
+ b" recorder.stop()\n"
100
+ b"})"
101
+ )
102
+ RECORD = RECORD.decode("ascii")
103
+
104
+ print(f"Recording started for {seconds} seconds.")
105
+ display(ipd.Javascript(RECORD))
106
+ s = colab_output.eval_js("record(%d)" % (seconds * 1000))
107
+ print("Recording ended.")
108
+ b = b64decode(s.split(",")[1])
109
+
110
+ fileformat = "wav"
111
+ filename = f"_audio.{fileformat}"
112
+ AudioSegment.from_file(BytesIO(b)).export(filename, format=fileformat)
113
+ return torchaudio.load(filename)
114
+
115
 
116
+ model = torch.load('export.pkl',map_location=torch.device('cpu'))
117
+
118
+
119
+
120
+ gr.Interface(fn=predict, inputs=gr.inputs.Audio(source=record()[0]), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)