Spaces:
Sleeping
Sleeping
change in prompt
Browse files- .gitignore +1 -0
- app.py +44 -15
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
app.py
CHANGED
@@ -1,12 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from PyPDF2 import PdfReader
|
5 |
from streamlit_extras.add_vertical_space import add_vertical_space
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
#from langchain.embeddings.openai import OpenAIEmbeddings
|
8 |
from langchain.vectorstores import faiss
|
9 |
|
|
|
|
|
|
|
10 |
with st.sidebar:
|
11 |
st.title("File Research using LLM")
|
12 |
st.markdown(''' Upload your file and ask questions and do Research''')
|
@@ -23,19 +32,21 @@ with st.sidebar:
|
|
23 |
length_function=len
|
24 |
)
|
25 |
chunks=text_splitter.split_text(text)
|
|
|
|
|
26 |
|
27 |
|
28 |
st.write('Made by ALOK')
|
29 |
|
30 |
|
31 |
def main():
|
32 |
-
import replicate
|
33 |
st.header('Talk to your file')
|
|
|
34 |
#embeddings=OpenAIEmbeddings()
|
35 |
#vectorstore=faiss.FAISS.from_texts(chunks, embedding=embeddings)
|
36 |
|
37 |
# The meta/llama-2-70b-chat model can stream output as it's running.
|
38 |
-
|
39 |
|
40 |
if "messages" not in st.session_state:
|
41 |
st.session_state.messages = []
|
@@ -51,28 +62,46 @@ def main():
|
|
51 |
st.chat_message("user").markdown(prompt)
|
52 |
# Add user message to chat history
|
53 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
)
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Display assistant response in chat message container
|
61 |
with st.chat_message("assistant"):
|
62 |
message_placeholder = st.empty()
|
|
|
63 |
|
64 |
-
# The predict method returns an iterator, and you can iterate over that output.
|
65 |
-
response_till_now=''
|
66 |
-
for item in output:
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
message_placeholder.markdown(response_till_now)
|
71 |
-
response = f"AI: {response_till_now}"
|
72 |
|
73 |
|
74 |
# Add assistant response to chat history
|
75 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
76 |
# https://replicate.com/meta/llama-2-70b-chat/versions/02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3/api#output-schema
|
77 |
#print(item, end="")
|
78 |
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import time
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from getpass import getpass
|
6 |
+
from langchain.llms import replicate
|
7 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
|
10 |
from PyPDF2 import PdfReader
|
11 |
from streamlit_extras.add_vertical_space import add_vertical_space
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
#from langchain.embeddings.openai import OpenAIEmbeddings
|
14 |
from langchain.vectorstores import faiss
|
15 |
|
16 |
+
load_dotenv()
|
17 |
+
REPLICATE_API_TOKEN = os.environ.get("REPLICATE_API_TOKEN")
|
18 |
+
|
19 |
with st.sidebar:
|
20 |
st.title("File Research using LLM")
|
21 |
st.markdown(''' Upload your file and ask questions and do Research''')
|
|
|
32 |
length_function=len
|
33 |
)
|
34 |
chunks=text_splitter.split_text(text)
|
35 |
+
|
36 |
+
|
37 |
|
38 |
|
39 |
st.write('Made by ALOK')
|
40 |
|
41 |
|
42 |
def main():
|
|
|
43 |
st.header('Talk to your file')
|
44 |
+
os.environ["REPLICATE_API_TOKEN"]=REPLICATE_API_TOKEN
|
45 |
#embeddings=OpenAIEmbeddings()
|
46 |
#vectorstore=faiss.FAISS.from_texts(chunks, embedding=embeddings)
|
47 |
|
48 |
# The meta/llama-2-70b-chat model can stream output as it's running.
|
49 |
+
|
50 |
|
51 |
if "messages" not in st.session_state:
|
52 |
st.session_state.messages = []
|
|
|
62 |
st.chat_message("user").markdown(prompt)
|
63 |
# Add user message to chat history
|
64 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
65 |
+
replite_api='r8_4fktoXrDGkgHY8uw1XlVtQJKQlAILKv0iBmPI'
|
66 |
+
|
67 |
+
|
68 |
+
# rep = replicate.Client(api_token=replite_api)
|
69 |
+
# output = replicate.run(
|
70 |
+
# "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
|
71 |
+
# input={"prompt": prompt}
|
72 |
+
# )
|
73 |
+
|
74 |
+
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3"
|
75 |
+
llm=replicate.Replicate(
|
76 |
+
streaming=True,
|
77 |
+
callbacks=[StreamingStdOutCallbackHandler()],
|
78 |
+
model=model,
|
79 |
+
model_kwargs={"temperature": 0.75, "max_length": 500, "top_p": 1},
|
80 |
+
replicate_api_token=REPLICATE_API_TOKEN
|
81 |
)
|
82 |
+
prompt = """
|
83 |
+
User: Answer the following yes/no question by reasoning step by step. Please don't provide incomplete answer. Can a dog drive a car?
|
84 |
+
Assistant:
|
85 |
+
"""
|
86 |
+
|
87 |
|
88 |
# Display assistant response in chat message container
|
89 |
with st.chat_message("assistant"):
|
90 |
message_placeholder = st.empty()
|
91 |
+
message_placeholder.markdown(llm(prompt) + "β")
|
92 |
|
93 |
+
# # The predict method returns an iterator, and you can iterate over that output.
|
94 |
+
# response_till_now=''
|
95 |
+
# for item in output:
|
96 |
+
# response_till_now+=item
|
97 |
+
# time.sleep(0.03)
|
98 |
+
# message_placeholder.markdown(response_till_now + "β")
|
99 |
+
# message_placeholder.markdown(response_till_now)
|
100 |
+
# response = f"AI: {response_till_now}"
|
101 |
|
102 |
|
103 |
# Add assistant response to chat history
|
104 |
+
# st.session_state.messages.append({"role": "assistant", "content": response})
|
105 |
# https://replicate.com/meta/llama-2-70b-chat/versions/02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3/api#output-schema
|
106 |
#print(item, end="")
|
107 |
|