alvarobartt's picture
alvarobartt HF staff
Update app.py
d3f9719 verified
raw
history blame
5.74 kB
import random
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "alvarobartt/ghibli-characters-flux-lora"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=80)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image, seed
examples = [
(
"Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet,"
" standing heroically on a lush alien planet, vibrant flowers blooming around, soft"
" sunlight illuminating the scene, a gentle breeze rustling the leaves"
),
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# FLUX.1 Studio Ghibli LoRA")
gr.Markdown(
"[alvarobartt/ghibli-characters-flux-lora](https://huggingface.co/alvarobartt/ghibli-characters-flux-lora)"
" is a LoRA fine-tune of [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)"
" with [alvarobartt/ghibli-characters](https://huggingface.co/datasets/alvarobartt/ghibli-characters)."
)
with gr.Accordion("How to generate nice prompts?", open=False):
gr.Markdown(
"What worked best for me to generate high-quality prompts of well-known characters,"
" was to prompt either [Claude 3 Haiku](https://claude.ai), [GPT4-o](https://chatgpt.com/),"
" or [Perplexity](https://www.perplexity.ai/) with:\n\nYou are an"
" expert prompt writer for diffusion text to image models, and you've been provided"
" the following prompt template:\n\n\"Ghibli style [character description] with"
" [distinctive features], [action or pose], [environment or background],"
" [lighting or atmosphere], [additional details].\"\n\nCould you create a prompt"
" to generate [CHARACTER NAME] as a Studio Ghibli character following that template?"
" [MORE DETAILS IF NEEDED]\n"
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
fn=lambda x: (Image.open("./example.jpg"), 42),
inputs=[prompt],
outputs=[result, seed],
run_on_click=True,
)
gr.Markdown(
"### Disclaimer\n\n"
"License is non-commercial for both FLUX.1-dev and the Studio Ghibli dataset;"
" but free to use for personal and non-commercial purposes."
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed],
)
demo.queue()
demo.launch()