|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import pathlib |
|
|
|
import datasets |
|
import evaluate |
|
from huggingface_hub import snapshot_download |
|
|
|
from comet.models.multitask.unified_metric import UnifiedMetric |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{wan-etal-2022-unite, |
|
title = "{U}ni{TE}: Unified Translation Evaluation", |
|
author = "Wan, Yu and |
|
Liu, Dayiheng and |
|
Yang, Baosong and |
|
Zhang, Haibo and |
|
Chen, Boxing and |
|
Wong, Derek and |
|
Chao, Lidia", |
|
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = may, |
|
year = "2022", |
|
address = "Dublin, Ireland", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.acl-long.558", |
|
doi = "10.18653/v1/2022.acl-long.558", |
|
pages = "8117--8127", |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
From https://huggingface.co/Unbabel/unite-mup |
|
""" |
|
|
|
class UNITEMUP(evaluate.Metric): |
|
def _info(self): |
|
return evaluate.MetricInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
features=datasets.Features( |
|
{ |
|
"predictions": datasets.Value("string"), |
|
"references": datasets.Value("string"), |
|
} |
|
), |
|
) |
|
|
|
def _download_and_prepare(self, dl_manager): |
|
try: |
|
model_checkpoint_path = next(pathlib.Path('./models--Unbabel--unite-mup/').rglob('*.ckpt')) |
|
self.model = UnifiedMetric.load_from_checkpoint(model_checkpoint_path) |
|
except: |
|
model_path = snapshot_download(repo_id="Unbabel/unite-mup", cache_dir=os.path.abspath(os.path.dirname('.'))) |
|
model_checkpoint_path = f"{model_path}/checkpoints/model.ckpt" |
|
self.model = UnifiedMetric.load_from_checkpoint(model_checkpoint_path) |
|
|
|
|
|
def _compute( |
|
self, |
|
predictions, |
|
references, |
|
data_keys=None, |
|
): |
|
data = [{data_keys[0]: p, data_keys[1]: r} for p, r in zip(predictions, references)] |
|
return {"scores": self.model.predict(data, batch_size=8).scores} |
|
|
|
|
|
def compute_triplet( |
|
self, |
|
predictions, |
|
references, |
|
sources, |
|
): |
|
data = [{"src": s, "mt": p, "ref": r} for s, p, r in zip(sources, predictions, references)] |
|
return {"scores": self.model.predict(data, batch_size=8).metadata.unified_scores} |
|
|
|
|