alvations commited on
Commit
ae3c454
1 Parent(s): 33f2ebb

remove stuff

Browse files
Files changed (1) hide show
  1. cometda.py +0 -81
cometda.py DELETED
@@ -1,81 +0,0 @@
1
- import os
2
- import pathlib
3
-
4
- import datasets
5
- import evaluate
6
- from huggingface_hub import snapshot_download, login
7
-
8
- from comet.models.multitask.unified_metric import UnifiedMetric
9
-
10
-
11
- login(token="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")
12
-
13
- _CITATION = """\
14
- @inproceedings{rei-etal-2022-comet,
15
- title = "{COMET}-22: Unbabel-{IST} 2022 Submission for the Metrics Shared Task",
16
- author = "Rei, Ricardo and
17
- C. de Souza, Jos{\'e} G. and
18
- Alves, Duarte and
19
- Zerva, Chrysoula and
20
- Farinha, Ana C and
21
- Glushkova, Taisiya and
22
- Lavie, Alon and
23
- Coheur, Luisa and
24
- Martins, Andr{\'e} F. T.",
25
- booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
26
- month = dec,
27
- year = "2022",
28
- address = "Abu Dhabi, United Arab Emirates (Hybrid)",
29
- publisher = "Association for Computational Linguistics",
30
- url = "https://aclanthology.org/2022.wmt-1.52",
31
- pages = "578--585",
32
- }
33
- """
34
-
35
-
36
- _DESCRIPTION = """\
37
- From https://huggingface.co/Unbabel/unite-mup
38
- """
39
-
40
- class COMETDA(evaluate.Metric):
41
- def _info(self):
42
- return evaluate.MetricInfo(
43
- description=_DESCRIPTION,
44
- citation=_CITATION,
45
- features=datasets.Features(
46
- {
47
- "predictions": datasets.Value("string"),
48
- "references": datasets.Value("string"),
49
- }
50
- ),
51
- )
52
-
53
- def _download_and_prepare(self, dl_manager):
54
- try:
55
- model_checkpoint_path = next(pathlib.Path('./models--Unbabel--wmt22-cometkiwi-da/').rglob('*.ckpt'))
56
- self.model = UnifiedMetric.load_from_checkpoint(model_checkpoint_path)
57
- except:
58
- model_path = snapshot_download(repo_id="Unbabel/wmt22-cometkiwi-da", cache_dir=os.path.abspath(os.path.dirname('.')))
59
- model_checkpoint_path = f"{model_path}/checkpoints/model.ckpt"
60
- self.model = UnifiedMetric.load_from_checkpoint(model_checkpoint_path)
61
-
62
-
63
- def _compute(
64
- self,
65
- predictions,
66
- references,
67
- data_keys=None,
68
- ): # Allows user to use either source inputs or reference translations as ground truth.
69
- data = [{data_keys[0]: p, data_keys[1]: r} for p, r in zip(predictions, references)]
70
- return {"scores": self.model.predict(data, batch_size=8).scores}
71
-
72
-
73
- def compute_triplet(
74
- self,
75
- predictions,
76
- references,
77
- sources,
78
- ): # Unified scores, uses sources, hypotheses and references.
79
- data = [{"src": s, "mt": p, "ref": r} for s, p, r in zip(sources, predictions, references)]
80
- return {"scores": self.model.predict(data, batch_size=8).metadata.unified_scores}
81
-