Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,711 Bytes
dddb041 ab14713 66bd20d 8669462 ab14713 8669462 ab14713 8669462 ab14713 06fd0d1 ab14713 059cfb9 c03b3ba 8669462 538d554 8669462 66bd20d 8669462 538d554 c03b3ba 66bd20d c03b3ba 8669462 059cfb9 06fd0d1 c03b3ba 81c2d2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
import requests
import io
from PIL import Image
import json
import os
# Load LoRAs from JSON
with open('loras.json', 'r') as f:
loras = json.load(f)
# API call function
def query(payload, api_url, token):
headers = {"Authorization": f"Bearer {token}"}
response = requests.post(api_url, headers=headers, json=payload)
return io.BytesIO(response.content)
# Define the function to run when the button is clicked
def run_lora(prompt):
selected_lora = loras[0]
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
trigger_word = selected_lora["trigger_word"]
token = os.getenv("API_TOKEN")
payload = {"inputs": f"{prompt} {trigger_word}"}
image_bytes = query(payload, api_url, token)
return Image.open(image_bytes).resize((300, 300)) # Resizing the image
# Gradio UI
print("Before Gradio Interface")
with gr.Blocks() as app:
title = gr.HTML("<h1>LoRA the Explorer</h1>")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
)
prompt = gr.Textbox(label="Prompt", lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA")
result = gr.Image(interactive=False, label="Generated Image")
with gr.Row():
with gr.Column():
title
gallery
with gr.Column():
prompt
gr.Button("Run").click(
fn=run_lora,
inputs=[prompt],
outputs=[result]
)
result
print("After Gradio Interface")
# Launch the Gradio interface with a queue
app.launch(debug=True)
|