import streamlit as st from secret_key import openapi_key, groq_api_key import os from groq import Groq from langchain_groq import ChatGroq from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain st.set_page_config(page_icon='rex.png', layout='wide', page_title='Interview Preparation : Getting Started') st.sidebar.markdown("Navigate using the options above") #key = st.sidebar.text_input("Groq API Key ", type="password") if "groq_key" not in st.session_state: st.session_state.groq_key = groq_api_key #if not key and not st.session_state.groq_key: #st.sidebar.info("Please add your API key to continue") #st.stop() #if key: #st.session_state.groq_key = key os.environ['GROQ_API_KEY'] = groq_api_key llm = ChatGroq( groq_api_key=groq_api_key, model_name="mixtral-8x7b-32768" ) st.title("Interview AI Tool : Getting Started") st.header("Recommended Steps : ") st.markdown("""\n1. Please upload your **resume** in the sidebar on your **left**. \n\n2. If you are applying for a specific job , please add **job description** in the text box **below**. \n\n3. For starters we recommend navigating to the **Introduction Round** , here your AI assistant will debrief you on the interview and answer your queries related to the interview. \n\n4. Next, we recommend having a go with a low stakes **Warmup Round** to get you in the right flow for the actual interview round. \n\n5. Navigate to the **Interview Round** to get started with your practice interviews.\n\n""") st.sidebar.header("Resume") resume = st.sidebar.file_uploader(label="**Upload your Resume/CV PDF file**", type='pdf') if resume: pdf = PdfReader(resume) text = "" for page in pdf.pages: text += page.extract_text() text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) embeddings = HuggingFaceEmbeddings() doc = FAISS.from_texts(chunks, embeddings) chain = load_qa_chain(llm, chain_type="stuff") name = chain.run(input_documents=doc.similarity_search("What is the person's name?"), question="What is the person's name") #exp = chain.run(input_documents=doc.similarity_search("What is the professional experience?"), question="What is the professional experience?") skills = chain.run(input_documents=doc.similarity_search("What are the person's skills?"), question="What are the person's skills?") #certs = chain.run(input_documents=doc.similarity_search("What is the person's courses/certifications?"), question="What is the person's courses/certifications?") #projects = chain.run(input_documents=doc.similarity_search("What are the person's projects"), question="What are the person's projects") resume_info = {"Name": name, #"Experience": exp, "Skills": skills, #"Certifications": certs, #"Projects": projects } st.session_state["Resume Info"] = resume_info st.sidebar.info("PDF Read Successfully!") st.header("Job Details") st.session_state["Job Description"] = st.text_area(label="**Write your job description here**", height=300)