import streamlit as st from groq import Groq from langchain.prompts import PromptTemplate from langchain.chains import LLMChain import os from langchain_groq import ChatGroq from secret_key import groq_api_key import pandas as pd from langchain.schema import (AIMessage, HumanMessage, SystemMessage) from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate ) from langchain.memory import ConversationBufferMemory from langchain.memory import ConversationBufferWindowMemory import json,time,random from templates import choose_template, extract_template, warmup_feedback_template, warm_up_question_template from utils import select_questions st.set_page_config(page_icon='rex.png', layout='wide') st.title("Warm Up Round : Getting Comfortable with the Interview") category = st.selectbox("Which type of questions do you want to practice?", ['Technical', 'Behavioural', 'Culture Fit','STAR'],index=None) while category is None: st.info('Please select question category') st.stop() if category: data = select_questions(category=category) if not st.session_state.groq_key: st.info("Please add your API key to continue") st.stop() if not st.session_state["Resume Info"]: st.info("Please upload your Resume") st.stop() if not st.session_state["Job Description"]: st.info("Please add your job description") st.stop() os.environ['GROQ_API_KEY'] = st.session_state.groq_key client = ChatGroq( groq_api_key=groq_api_key, model_name="mixtral-8x7b-32768" ) ### Extract previously asked Questions from the history memory = ConversationBufferMemory( memory_key="history", return_messages=True ) system_template_e = extract_template system_message_prompt_e = SystemMessagePromptTemplate.from_template(system_template_e) human_template_e = "{text}" human_message_prompt_e = HumanMessagePromptTemplate.from_template(human_template_e) chat_prompt_e = ChatPromptTemplate.from_messages([system_message_prompt_e, human_message_prompt_e]) extract_chain = LLMChain(llm=client, prompt=chat_prompt_e) ### Choose question based on action system_template_c = choose_template system_message_prompt_c = SystemMessagePromptTemplate.from_template(system_template_c) human_template_c = "{text}" human_message_prompt_c = HumanMessagePromptTemplate.from_template(human_template_c) chat_prompt_c = ChatPromptTemplate.from_messages([system_message_prompt_c, human_message_prompt_c]) choose_chain = LLMChain(llm=client, prompt=chat_prompt_c) ### Asking the questions system_template_q = warm_up_question_template system_message_prompt_q = SystemMessagePromptTemplate.from_template(system_template_q) human_template_q = "{text}" human_message_prompt_q = HumanMessagePromptTemplate.from_template(human_template_q) chat_prompt_q = ChatPromptTemplate.from_messages([system_message_prompt_q, human_message_prompt_q]) question_chain = LLMChain(llm=client, prompt=chat_prompt_q) ### Provide Feedback system_template_f = warmup_feedback_template system_message_prompt_f = SystemMessagePromptTemplate.from_template(system_template_f) human_template_f = "{text}" human_message_prompt_f = HumanMessagePromptTemplate.from_template(human_template_f) chat_prompt_f = ChatPromptTemplate.from_messages([system_message_prompt_f, human_message_prompt_f]) feedback_chain = LLMChain(llm=client, prompt=chat_prompt_f) if "warmup_message" not in st.session_state: st.session_state.warmup_message = [] if "action" not in st.session_state: st.session_state.action = "Next" if "history" not in st.session_state: st.session_state.history = [] if "questions" not in st.session_state: st.session_state.questions = [] for message in st.session_state.warmup_message: if message['role'] == "user": name = "user" avatar = "user.png" else: name = "assistant" avatar = "rex.png" with st.chat_message(name, avatar=avatar): st.markdown(f"{message['content']}") if inp := st.chat_input("Type here"): with st.chat_message("user",avatar='user.png'): st.markdown(inp) st.session_state['warmup_message'].append({'role': 'user', 'content': inp}) question = None if st.session_state.warmup_message != [] and st.session_state.warmup_message[-1]['role'] == "feedback": option = st.radio(label="Which question would you like to do?", options=["Next", "Repeat"], index=None) while option is None: pass st.session_state.action = option if st.session_state.action == "Next" or "Repeat" and ( st.session_state.warmup_message == [] or st.session_state.warmup_message[-1]['role'] == "feedback"): if st.session_state.questions != []: extracts = extract_chain.run(history=st.session_state.questions, text="") else: extracts = "No previous Questions" chosen_q = choose_chain.run(action=st.session_state.action, questions=extracts, data=data, text="",details=st.session_state["Resume Info"], description=st.session_state['Job Description']) response = question_chain.run(question=chosen_q, history=st.session_state.history[-2:], text=inp, details=st.session_state["Resume Info"]) with st.chat_message("assistant", avatar='rex.png'): message_placeholder = st.empty() full_response = "" for chunk in response.split(): full_response += chunk + " " time.sleep(0.05) # Add a blinking cursor to simulate typing message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) #st.markdown(response) st.session_state.action = "Feedback" st.session_state['warmup_message'].append({'role': 'interviewer', 'content': response}) memory.save_context({"input": ""}, {"output": response}) st.session_state['history'].append(memory.buffer_as_messages[-2:]) st.session_state['questions'].append({'Question': response}) question = chosen_q st.stop() if st.session_state.warmup_message[-1]['role'] == "user" and st.session_state.action == "Feedback": feedback = feedback_chain.run(question=question, response=inp, history=st.session_state.history[-2:], text=inp,asked=st.session_state.warmup_message[-2]['content']) with st.chat_message("assistant", avatar='rex.png'): message_placeholder = st.empty() full_response = "" for chunk in feedback.split(): full_response += chunk + " " time.sleep(0.05) # Add a blinking cursor to simulate typing message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) #st.markdown(feedback) st.session_state['warmup_message'].append({'role': 'feedback', 'content': feedback}) memory.save_context({"input": inp}, {"output": feedback}) st.session_state['history'].append(memory.buffer_as_messages[-2:]) st.button("Continue")