alwinvargheset@outlook.com
commited on
Commit
·
7730772
1
Parent(s):
c63277b
added_model
Browse files- README.md +0 -13
- app.py +189 -0
- phishing_model/.gitattributes +35 -0
- phishing_model/README.md +43 -0
- phishing_model/config.json +35 -0
- phishing_model/gitattributes +35 -0
- phishing_model/pytorch_model.bin +3 -0
- phishing_model/special_tokens_map.json +7 -0
- phishing_model/tokenizer.json +0 -0
- phishing_model/tokenizer_config.json +55 -0
- phishing_model/training_args.bin +3 -0
- phishing_model/vocab.txt +0 -0
- requirements.txt +8 -0
- train.py +80 -0
README.md
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Phishing Email Detector
|
3 |
-
emoji: 👀
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: blue
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.40.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import imaplib
|
3 |
+
import email
|
4 |
+
from email.header import decode_header
|
5 |
+
import torch
|
6 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
7 |
+
import re
|
8 |
+
|
9 |
+
class EmailProcessor:
|
10 |
+
@staticmethod
|
11 |
+
def decode_email_content(content, default_charset='utf-8'):
|
12 |
+
if isinstance(content, bytes):
|
13 |
+
try:
|
14 |
+
return content.decode(default_charset)
|
15 |
+
except UnicodeDecodeError:
|
16 |
+
try:
|
17 |
+
return content.decode('iso-8859-1')
|
18 |
+
except UnicodeDecodeError:
|
19 |
+
return content.decode(default_charset, errors='ignore')
|
20 |
+
return str(content)
|
21 |
+
|
22 |
+
@staticmethod
|
23 |
+
def clean_text(text):
|
24 |
+
text = re.sub(r'<[^>]+>', '', text)
|
25 |
+
text = re.sub(r'\s+', ' ', text)
|
26 |
+
return text.strip()
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def get_emails(email_address, password, imap_server, imap_port):
|
30 |
+
try:
|
31 |
+
imap = imaplib.IMAP4_SSL(imap_server, imap_port)
|
32 |
+
imap.login(email_address, password)
|
33 |
+
imap.select('INBOX')
|
34 |
+
|
35 |
+
_, message_numbers = imap.search(None, 'ALL')
|
36 |
+
|
37 |
+
emails = []
|
38 |
+
for num in message_numbers[0].split()[-5:]:
|
39 |
+
_, msg_data = imap.fetch(num, '(RFC822)')
|
40 |
+
email_body = msg_data[0][1]
|
41 |
+
message = email.message_from_bytes(email_body)
|
42 |
+
|
43 |
+
subject = decode_header(message["subject"])[0][0]
|
44 |
+
if isinstance(subject, bytes):
|
45 |
+
subject = EmailProcessor.decode_email_content(subject)
|
46 |
+
|
47 |
+
if message.is_multipart():
|
48 |
+
content = ''
|
49 |
+
for part in message.walk():
|
50 |
+
if part.get_content_type() == "text/plain":
|
51 |
+
payload = part.get_payload(decode=True)
|
52 |
+
if payload:
|
53 |
+
charset = part.get_content_charset() or 'utf-8'
|
54 |
+
content += EmailProcessor.decode_email_content(payload, charset)
|
55 |
+
else:
|
56 |
+
payload = message.get_payload(decode=True)
|
57 |
+
if payload:
|
58 |
+
charset = message.get_content_charset() or 'utf-8'
|
59 |
+
content = EmailProcessor.decode_email_content(payload, charset)
|
60 |
+
else:
|
61 |
+
content = ""
|
62 |
+
|
63 |
+
emails.append({
|
64 |
+
'subject': subject,
|
65 |
+
'content': EmailProcessor.clean_text(content)
|
66 |
+
})
|
67 |
+
|
68 |
+
imap.close()
|
69 |
+
imap.logout()
|
70 |
+
return emails, None
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
return None, str(e)
|
74 |
+
|
75 |
+
class PhishingDetector:
|
76 |
+
def __init__(self, model_path="./phishing_model"):
|
77 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
78 |
+
self.tokenizer = BertTokenizer.from_pretrained(model_path)
|
79 |
+
self.model = BertForSequenceClassification.from_pretrained(
|
80 |
+
model_path,
|
81 |
+
num_labels=2
|
82 |
+
).to(self.device)
|
83 |
+
self.model.eval()
|
84 |
+
|
85 |
+
@torch.no_grad()
|
86 |
+
def predict(self, text):
|
87 |
+
cleaned_text = EmailProcessor.clean_text(text)
|
88 |
+
inputs = self.tokenizer(
|
89 |
+
cleaned_text,
|
90 |
+
return_tensors="pt",
|
91 |
+
truncation=True,
|
92 |
+
max_length=512,
|
93 |
+
padding=True
|
94 |
+
)
|
95 |
+
|
96 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
97 |
+
outputs = self.model(**inputs)
|
98 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
|
99 |
+
return probabilities[0][1].item()
|
100 |
+
|
101 |
+
# Initialize the app
|
102 |
+
st.title("📧 Email Phishing Detector")
|
103 |
+
st.write("Connect your email account to analyze messages for potential phishing attempts.")
|
104 |
+
|
105 |
+
# Email configuration in sidebar
|
106 |
+
with st.sidebar:
|
107 |
+
st.header("Email Settings")
|
108 |
+
email_address = st.text_input("Email Address", key="email_address_input")
|
109 |
+
password = st.text_input("Password", type="password", key="password_input")
|
110 |
+
imap_server = st.text_input("IMAP Server", value="imap.gmail.com", key="imap_server_input")
|
111 |
+
imap_port = st.number_input("IMAP Port", value=993, key="imap_port_input")
|
112 |
+
|
113 |
+
# Initialize the model using st.cache_resource
|
114 |
+
@st.cache_resource
|
115 |
+
def load_detector():
|
116 |
+
return PhishingDetector()
|
117 |
+
|
118 |
+
try:
|
119 |
+
detector = load_detector()
|
120 |
+
model_loaded = True
|
121 |
+
except Exception as e:
|
122 |
+
st.error(f"Error loading model: {str(e)}")
|
123 |
+
model_loaded = False
|
124 |
+
|
125 |
+
# Add manual text analysis option
|
126 |
+
st.markdown("### 📝 Manual Text Analysis")
|
127 |
+
manual_text = st.text_area("Enter text to analyze:", height=100, key="manual_text_input")
|
128 |
+
if st.button("Analyze Text", key="analyze_text_btn") and manual_text.strip():
|
129 |
+
with st.spinner("Analyzing text..."):
|
130 |
+
phishing_score = detector.predict(manual_text)
|
131 |
+
risk_color = "red" if phishing_score > 0.5 else "green"
|
132 |
+
st.markdown(f"**Phishing Risk Score:** <span style='color:{risk_color}'>{phishing_score:.2%}</span>", unsafe_allow_html=True)
|
133 |
+
|
134 |
+
if phishing_score > 0.8:
|
135 |
+
st.error("⚠️ High Risk: This text shows strong indicators of being a phishing attempt!")
|
136 |
+
elif phishing_score > 0.5:
|
137 |
+
st.warning("⚠️ Medium Risk: This text shows some suspicious characteristics.")
|
138 |
+
else:
|
139 |
+
st.success("✅ Low Risk: This text appears to be legitimate.")
|
140 |
+
|
141 |
+
st.markdown("### 📨 Email Analysis")
|
142 |
+
if model_loaded and st.button("Analyze Emails", key="analyze_emails_btn"):
|
143 |
+
if not email_address or not password:
|
144 |
+
st.warning("Please enter your email credentials.")
|
145 |
+
else:
|
146 |
+
with st.spinner("Connecting to email..."):
|
147 |
+
emails, error = EmailProcessor.get_emails(email_address, password, imap_server, imap_port)
|
148 |
+
|
149 |
+
if error:
|
150 |
+
st.error(f"Error connecting to email: {error}")
|
151 |
+
elif emails:
|
152 |
+
st.success("Successfully retrieved emails!")
|
153 |
+
|
154 |
+
for i, email_data in enumerate(emails):
|
155 |
+
with st.expander(f"Email {i+1}: {email_data['subject']}"):
|
156 |
+
phishing_score = detector.predict(email_data['content'])
|
157 |
+
|
158 |
+
risk_color = "red" if phishing_score > 0.5 else "green"
|
159 |
+
st.markdown(f"**Phishing Risk Score:** <span style='color:{risk_color}'>{phishing_score:.2%}</span>", unsafe_allow_html=True)
|
160 |
+
|
161 |
+
if phishing_score > 0.8:
|
162 |
+
st.error("⚠️ High Risk: This email shows strong indicators of being a phishing attempt!")
|
163 |
+
elif phishing_score > 0.5:
|
164 |
+
st.warning("⚠️ Medium Risk: This email shows some suspicious characteristics.")
|
165 |
+
else:
|
166 |
+
st.success("✅ Low Risk: This email appears to be legitimate.")
|
167 |
+
|
168 |
+
st.text_area("Email Content", email_data['content'], height=100, key=f"email_content_{i}")
|
169 |
+
else:
|
170 |
+
st.warning("No emails found in inbox.")
|
171 |
+
|
172 |
+
st.sidebar.markdown("---")
|
173 |
+
st.sidebar.markdown("""
|
174 |
+
### Instructions
|
175 |
+
1. Enter your email credentials
|
176 |
+
2. For Gmail:
|
177 |
+
- Use an App Password instead of your regular password
|
178 |
+
- Enable 2FA and generate an App Password from Google Account settings
|
179 |
+
3. Click "Analyze Emails" to scan your recent emails
|
180 |
+
""")
|
181 |
+
|
182 |
+
st.sidebar.markdown("---")
|
183 |
+
st.sidebar.markdown("""
|
184 |
+
### About
|
185 |
+
This application uses a BERT-based model to detect phishing attempts in emails.
|
186 |
+
You can either:
|
187 |
+
1. Analyze your emails directly by connecting your email account
|
188 |
+
2. Manually input text to analyze for phishing content
|
189 |
+
""")
|
phishing_model/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
phishing_model/README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
# BERT FINETUNED ON PHISHING DETECTION
|
4 |
+
|
5 |
+
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an [phishing dataset](https://huggingface.co/datasets/ealvaradob/phishing-dataset),
|
6 |
+
capable of detecting phishing in its four most common forms: URLs, Emails, SMS messages and even websites.
|
7 |
+
|
8 |
+
It achieves the following results on the evaluation set:
|
9 |
+
|
10 |
+
- Loss: 0.1953
|
11 |
+
- Accuracy: 0.9717
|
12 |
+
- Precision: 0.9658
|
13 |
+
- Recall: 0.9670
|
14 |
+
- False Positive Rate: 0.0249
|
15 |
+
|
16 |
+
## Model description
|
17 |
+
|
18 |
+
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion.
|
19 |
+
This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why
|
20 |
+
it can use lots of publicly available data) with an automatic process to generate inputs and labels from
|
21 |
+
those texts.
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
## Motivation and Purpose
|
26 |
+
|
27 |
+
Phishing is one of the most frequent and most expensive cyber-attacks according to several security reports.
|
28 |
+
This model aims to efficiently and accurately prevent phishing attacks against individuals and organizations.
|
29 |
+
To achieve it, BERT was trained on a diverse and robust dataset containing: URLs, SMS Messages, Emails and
|
30 |
+
Websites, which allows the model to extend its detection capability beyond the usual and to be used in various
|
31 |
+
contexts.
|
32 |
+
|
33 |
+
|
34 |
+
### Training results
|
35 |
+
|
36 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | False Positive Rate |
|
37 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:-------------------:|
|
38 |
+
| 0.1487 | 1.0 | 3866 | 0.1454 | 0.9596 | 0.9709 | 0.9320 | 0.0203 |
|
39 |
+
| 0.0805 | 2.0 | 7732 | 0.1389 | 0.9691 | 0.9663 | 0.9601 | 0.0243 |
|
40 |
+
| 0.0389 | 3.0 | 11598 | 0.1779 | 0.9683 | 0.9778 | 0.9461 | 0.0156 |
|
41 |
+
| 0.0091 | 4.0 | 15464 | 0.1953 | 0.9717 | 0.9658 | 0.9670 | 0.0249 |
|
42 |
+
|
43 |
+
|
phishing_model/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-large-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"id2label": {
|
13 |
+
"0": "benign",
|
14 |
+
"1": "phishing"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 4096,
|
18 |
+
"label2id": {
|
19 |
+
"benign": 0,
|
20 |
+
"phishing": 1
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"model_type": "bert",
|
25 |
+
"num_attention_heads": 16,
|
26 |
+
"num_hidden_layers": 24,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"position_embedding_type": "absolute",
|
29 |
+
"problem_type": "single_label_classification",
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.34.1",
|
32 |
+
"type_vocab_size": 2,
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 30522
|
35 |
+
}
|
phishing_model/gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
phishing_model/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7fc8fd8ff9eb431b5876bff2e94d0ba31987fc2301942b65d1306eba9d18646
|
3 |
+
size 1340710638
|
phishing_model/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
phishing_model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
phishing_model/tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
phishing_model/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d104fd966c5439370d740371ebeae1a9b747a93c604762957f98ecfeec61108
|
3 |
+
size 4536
|
phishing_model/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
datasets
|
4 |
+
scikit-learn
|
5 |
+
streamlit
|
6 |
+
tqdm
|
7 |
+
email-validator
|
8 |
+
regex>=2023.5.5
|
train.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset, Dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Step 1: Load Dataset
|
7 |
+
dataset = load_dataset("ealvaradob/phishing-dataset", "combined_reduced", trust_remote_code=True)
|
8 |
+
|
9 |
+
# Step 2: Convert to Pandas and Split
|
10 |
+
df = dataset['train'].to_pandas()
|
11 |
+
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
12 |
+
|
13 |
+
# Step 3: Convert Back to Hugging Face Dataset
|
14 |
+
train_dataset = Dataset.from_pandas(train_df, preserve_index=False)
|
15 |
+
test_dataset = Dataset.from_pandas(test_df, preserve_index=False)
|
16 |
+
|
17 |
+
# Step 4: Tokenizer Initialization
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
|
19 |
+
|
20 |
+
# Step 5: Preprocess Function
|
21 |
+
def preprocess_data(examples):
|
22 |
+
# Use the correct column name for the text data
|
23 |
+
return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=512)
|
24 |
+
|
25 |
+
# Step 6: Tokenize the Dataset
|
26 |
+
tokenized_train = train_dataset.map(preprocess_data, batched=True)
|
27 |
+
tokenized_test = test_dataset.map(preprocess_data, batched=True)
|
28 |
+
|
29 |
+
# Remove unused columns and set format for PyTorch
|
30 |
+
tokenized_train = tokenized_train.remove_columns(['text'])
|
31 |
+
tokenized_test = tokenized_test.remove_columns(['text'])
|
32 |
+
tokenized_train.set_format("torch")
|
33 |
+
tokenized_test.set_format("torch")
|
34 |
+
|
35 |
+
# Step 7: Model Initialization
|
36 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-large-uncased", num_labels=2)
|
37 |
+
|
38 |
+
# Step 8: Training Arguments
|
39 |
+
training_args = TrainingArguments(
|
40 |
+
evaluation_strategy="epoch",
|
41 |
+
learning_rate=2e-5,
|
42 |
+
per_device_train_batch_size=16,
|
43 |
+
per_device_eval_batch_size=16,
|
44 |
+
num_train_epochs=3,
|
45 |
+
weight_decay=0.01,
|
46 |
+
save_strategy="epoch",
|
47 |
+
logging_steps=10,
|
48 |
+
)
|
49 |
+
|
50 |
+
# Step 9: Trainer Setup
|
51 |
+
trainer = Trainer(
|
52 |
+
model=model,
|
53 |
+
args=training_args,
|
54 |
+
train_dataset=tokenized_train,
|
55 |
+
eval_dataset=tokenized_test,
|
56 |
+
)
|
57 |
+
|
58 |
+
# Step 10: Train the Model
|
59 |
+
trainer.train()
|
60 |
+
|
61 |
+
# Step 11: Save the Model
|
62 |
+
model.save_pretrained("./phishing_model")
|
63 |
+
tokenizer.save_pretrained("./phishing_model")
|
64 |
+
|
65 |
+
# Step 12: Inference Example
|
66 |
+
# Load the saved model for inference
|
67 |
+
loaded_tokenizer = AutoTokenizer.from_pretrained("./phishing_model")
|
68 |
+
loaded_model = AutoModelForSequenceClassification.from_pretrained("./phishing_model")
|
69 |
+
|
70 |
+
# Example input
|
71 |
+
text = "Your account has been compromised, please reset your password now!"
|
72 |
+
inputs = loaded_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
73 |
+
|
74 |
+
# Run inference
|
75 |
+
loaded_model.eval()
|
76 |
+
with torch.no_grad():
|
77 |
+
outputs = loaded_model(**inputs)
|
78 |
+
prediction = torch.argmax(outputs.logits, dim=-1).item()
|
79 |
+
|
80 |
+
print(f"Predicted label: {prediction}") # 0 = non-phishing, 1 = phishing
|