from datasets import load_dataset, Dataset from sklearn.model_selection import train_test_split from transformers import ( BertTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments ) import torch from sklearn.metrics import accuracy_score, precision_recall_fscore_support import numpy as np def compute_metrics(eval_pred): logits, labels = eval_pred preds = np.argmax(logits, axis=-1) precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary') acc = accuracy_score(labels, preds) return { 'accuracy': acc, 'f1': f1, 'precision': precision, 'recall': recall } def main(): # Check for GPU availability device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load and prepare dataset print("Loading dataset...") dataset = load_dataset("ealvaradob/phishing-dataset", "combined_reduced", trust_remote_code=True) df = dataset['train'].to_pandas() # Split dataset train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) train_dataset = Dataset.from_pandas(train_df, preserve_index=False) test_dataset = Dataset.from_pandas(test_df, preserve_index=False) # Initialize tokenizer and model print("Initializing model...") tokenizer = BertTokenizer.from_pretrained('bert-large-uncased') model = AutoModelForSequenceClassification.from_pretrained( 'bert-large-uncased', num_labels=2 ).to(device) def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128) # Tokenize datasets print("Tokenizing datasets...") train_dataset = train_dataset.map(tokenize_function, batched=True) test_dataset = test_dataset.map(tokenize_function, batched=True) # Convert to PyTorch datasets train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"]) test_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"]) # Set up training arguments epochs = 3 batch_size = 64 training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", save_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, num_train_epochs=epochs, weight_decay=0.01, logging_dir='./logs', logging_steps=50, load_best_model_at_end=True, metric_for_best_model="accuracy" ) # Define Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=test_dataset, tokenizer=tokenizer, compute_metrics=compute_metrics ) # Train model print("Starting training...") trainer.train() # Evaluate the model print("Evaluating model...") eval_results = trainer.evaluate() print(eval_results) # Save the model and tokenizer print("Saving model...") model_path = "./phishing_model" model.save_pretrained(model_path) tokenizer.save_pretrained(model_path) print(f"Model and tokenizer saved to {model_path}") print("Training completed and model saved!") if __name__ == "__main__": main()