keshavbhandari commited on
Commit
2876fc2
1 Parent(s): 1a26908

added model

Browse files
Files changed (5) hide show
  1. .gitignore +1 -0
  2. app.py +44 -9
  3. artifacts/vocab_remi.pkl +3 -0
  4. requirements.txt +4 -1
  5. transformer_model.py +1417 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ artifacts/pytorch_model_95.bin
app.py CHANGED
@@ -5,6 +5,11 @@ import soundfile as sf
5
  import wavio
6
  import os
7
  import subprocess
 
 
 
 
 
8
 
9
 
10
  def save_wav(filepath):
@@ -26,14 +31,44 @@ def save_wav(filepath):
26
  return wav_filepath
27
 
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  # @spaces.GPU(duration=120)
30
  def gradio_generate(prompt, temperature):
 
 
 
31
  # Convert midi to wav
32
- filename = "example.mid"
33
  save_wav(filename)
34
  filename = filename.replace(".mid", ".wav")
35
- # Get example audio file
36
- # filename = librosa.ex('trumpet')
37
  output_wave, samplerate = sf.read(filename, dtype='float32')
38
  output_filename = "temp.wav"
39
  wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
@@ -71,12 +106,12 @@ gr_interface = gr.Interface(
71
  description=description_text,
72
  allow_flagging=False,
73
  examples=[
74
- ["This techno song features a synth lead playing the main melody. This is accompanied by programmed percussion playing a simple kick focused beat. The hi-hat is accented in an open position on the 3-and count of every bar. The synth plays the bass part with a voicing that sounds like a cello. This techno song can be played in a club. The chord sequence is Gm, A7, Eb, Bb, C, F, Gm. The beat counts to 2. The tempo of this song is 128.0 beats per minute. The key of this song is G minor."],
75
- ["This is a new age piece. There is a flute playing the main melody with a lot of staccato notes. The rhythmic background consists of a medium tempo electronic drum beat with percussive elements all over the spectrum. There is a playful atmosphere to the piece. This piece can be used in the soundtrack of a children's TV show or an advertisement jingle."],
76
- ["The song is an instrumental. The song is in medium tempo with a classical guitar playing a lilting melody in accompaniment style. The song is emotional and romantic. The song is a romantic instrumental song. The chord sequence is Gm, F6, Ebm. The time signature is 4/4. This song is in Adagio. The key of this song is G minor."],
77
- ["This folk song features a female voice singing the main melody. This is accompanied by a tabla playing the percussion. A guitar strums chords. For most parts of the song, only one chord is played. At the last bar, a different chord is played. This song has minimal instruments. This song has a story-telling mood. This song can be played in a village scene in an Indian movie. The chord sequence is Bbm, Ab. The beat is 3. The tempo of this song is Allegro. The key of this song is Bb minor."],
78
- ["This is a live performance of a classical music piece. There is an orchestra performing the piece with a violin lead playing the main melody. The atmosphere is sentimental and heart-touching. This piece could be playing in the background at a classy restaurant. The chord progression in this song is Am7, Gm, Dm, A7, Dm. The beat is 3. This song is in Largo. The key of this song is D minor."],
79
- ["This is a techno piece with drums and beats and a leading melody. A synth plays chords. The music kicks off with a powerful and relentless drumbeat. Over the pounding beats, a leading melody emerges. In the middle of the song, a flock of seagulls flies over the venue and make loud bird sounds. It has strong danceability and can be played in a club. The tempo is 120 bpm. The chords played by the synth are Am, Cm, Dm, Gm."],
80
  ],
81
  cache_examples="lazy",
82
  )
 
5
  import wavio
6
  import os
7
  import subprocess
8
+ import pickle
9
+ import torch
10
+ import torch.nn as nn
11
+ from transformers import T5Tokenizer
12
+ from transformer_model import Transformer
13
 
14
 
15
  def save_wav(filepath):
 
31
  return wav_filepath
32
 
33
 
34
+ def generate_midi(caption, temperature=0.9, max_len=3000):
35
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
36
+ artifact_folder = 'artifacts'
37
+
38
+ tokenizer_filepath = os.path.join(artifact_folder, "vocab_remi.pkl")
39
+ # Load the tokenizer dictionary
40
+ with open(tokenizer_filepath, "rb") as f:
41
+ r_tokenizer = pickle.load(f)
42
+
43
+ # Get the vocab size
44
+ vocab_size = len(r_tokenizer)
45
+ print("Vocab size: ", vocab_size)
46
+ model = Transformer(vocab_size, 768, 8, 5000, 18, 1024, False, 8, device=device)
47
+ model.load_state_dict(torch.load('/artifacts/pytorch_model_95.bin', map_location=device))
48
+ model.eval()
49
+ tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
50
+
51
+ # caption = "A cinematic electronic soundtrack that evokes an epic and dark atmosphere, featuring cello, contrabass, and drums. The song is set in A minor with a moderate tempo and a 4/4 time signature, creating an emotional and action-packed ambiance suitable for film."
52
+ inputs = tokenizer(caption, return_tensors='pt', padding=True, truncation=True)
53
+ input_ids = nn.utils.rnn.pad_sequence(inputs.input_ids, batch_first=True, padding_value=0)
54
+ input_ids = input_ids.to(device)
55
+ attention_mask =nn.utils.rnn.pad_sequence(inputs.attention_mask, batch_first=True, padding_value=0)
56
+ attention_mask = attention_mask.to(device)
57
+ output = model.generate(input_ids, attention_mask, max_len=max_len,temperature = temperature)
58
+ output_list = output[0].tolist()
59
+ generated_midi = r_tokenizer.decode(output_list)
60
+ generated_midi.dump_midi("output.mid")
61
+
62
  # @spaces.GPU(duration=120)
63
  def gradio_generate(prompt, temperature):
64
+ # Generate midi
65
+ generate_midi(prompt, temperature)
66
+
67
  # Convert midi to wav
68
+ filename = "output.mid"
69
  save_wav(filename)
70
  filename = filename.replace(".mid", ".wav")
71
+ # Read the generated WAV file
 
72
  output_wave, samplerate = sf.read(filename, dtype='float32')
73
  output_filename = "temp.wav"
74
  wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
 
106
  description=description_text,
107
  allow_flagging=False,
108
  examples=[
109
+ ["A cheerful and melodic pop Christmas song featuring piano, acoustic guitar, vibraphone, bass, and drums, set in the key of Eb minor with a fast tempo of 123 bpm and a 4/4 time signature, creating a joyful and relaxing atmosphere."],
110
+ ["A melodic electronic song with ambient elements, featuring piano, acoustic guitar, alto saxophone, string ensemble, and electric bass. Set in G minor with a 4/4 time signature, it moves at a lively Presto tempo. The composition evokes a blend of relaxation and darkness, with hints of happiness and a meditative quality."],
111
+ ["This motivational electronic and pop song features a clean electric guitar, rock organ, synth voice, acoustic guitar, and vibraphone, creating a melodic and uplifting atmosphere. Set in the key of G# minor with a 4/4 time signature, the track moves at an energetic Allegro tempo of 120 beats per minute. The chord progression of Bbm7 and F# adds to the song's inspiring and corporate feel."],
112
+ ["This short electronic song in C minor features a brass section, string ensemble, tenor saxophone, clean electric guitar, and slap bass, creating a melodic and slightly dark atmosphere. With a tempo of 124 BPM (Allegro) and a 4/4 time signature, the track incorporates a chord progression of C7/E, Eb6, and Bbm6, adding a touch of corporate and motivational vibes to the overall composition."],
113
+ ["An energetic and melodic electronic trance track with a space and retro vibe, featuring drums, distortion guitar, flute, synth bass, and slap bass. Set in A minor with a fast tempo of 138 BPM, the song maintains a 4/4 time signature throughout its duration."],
114
+ ["A short but energetic rock fragment in C minor, featuring overdriven guitars, electric bass, and drums, with a vivacious tempo of 155 BPM and a 4/4 time signature, evoking a blend of dark and melodic tones."],
115
  ],
116
  cache_examples="lazy",
117
  )
artifacts/vocab_remi.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:513a5e8df7d53624930fd74139f6d2451d07c172504e0d0ee074d8ecb2a40d26
3
+ size 1540482
requirements.txt CHANGED
@@ -1,2 +1,5 @@
1
  librosa==0.10.2
2
- wavio==0.0.9
 
 
 
 
1
  librosa==0.10.2
2
+ wavio==0.0.9
3
+ torch
4
+ transformers
5
+ st-moe-pytorch
transformer_model.py ADDED
@@ -0,0 +1,1417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from aria.tokenizer import AbsTokenizer
2
+ # aria_tokenizer = AbsTokenizer()
3
+ import copy
4
+ import json
5
+ from typing import Optional, Any, Union, Callable
6
+ import torch.multiprocessing as mp
7
+ from torch.nn import DataParallel
8
+ import jsonlines
9
+ import math
10
+ import time
11
+ import torch
12
+ import os
13
+ import warnings
14
+ from tqdm import tqdm
15
+ from torch import Tensor
16
+ from aria.tokenizer import AbsTokenizer
17
+ import pickle
18
+ from torch.nn import Module, LayerNorm, Dropout, Linear
19
+ from torch.nn.modules.container import ModuleList
20
+ from torch.nn.modules.activation import MultiheadAttention
21
+ from torch.nn.init import xavier_uniform_
22
+ import torch.nn.functional as F
23
+ import torch.nn as nn
24
+
25
+ from st_moe_pytorch import MoE
26
+ from st_moe_pytorch import SparseMoEBlock
27
+
28
+ from einops import rearrange
29
+
30
+ from transformers import T5Tokenizer, T5EncoderModel
31
+
32
+
33
+ __all__ = ['Transformer', 'TransformerEncoder', 'TransformerDecoder', 'TransformerEncoderLayer', 'TransformerDecoderLayer']
34
+
35
+ def _generate_square_subsequent_mask(
36
+ sz: int,
37
+ device: Optional[torch.device] = None,
38
+ dtype: Optional[torch.dtype] = None,
39
+ ) -> Tensor:
40
+ r"""Generate a square causal mask for the sequence.
41
+
42
+ The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
43
+ """
44
+ if device is None:
45
+ device = torch.device('cpu')
46
+ if dtype is None:
47
+ dtype = torch.float32
48
+ return torch.triu(
49
+ torch.full((sz, sz), float('-inf'), dtype=dtype, device=device),
50
+ diagonal=1,
51
+ )
52
+
53
+
54
+ def _get_seq_len(
55
+ src: Tensor,
56
+ batch_first: bool
57
+ ) -> Optional[int]:
58
+
59
+ if src.is_nested:
60
+ return None
61
+ else:
62
+ src_size = src.size()
63
+ if len(src_size) == 2:
64
+ # unbatched: S, E
65
+ return src_size[0]
66
+ else:
67
+ # batched: B, S, E if batch_first else S, B, E
68
+ seq_len_pos = 1 if batch_first else 0
69
+ return src_size[seq_len_pos]
70
+
71
+
72
+ class PositionalEncoding(nn.Module):
73
+ r"""Inject some information about the relative or absolute position of the tokens in the sequence.
74
+ The positional encodings have the same dimension as the embeddings, so that the two can be summed.
75
+ Here, we use sine and cosine functions of different frequencies.
76
+ .. math:
77
+ \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
78
+ \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
79
+ \text{where pos is the word position and i is the embed idx)
80
+ Args:
81
+ d_model: the embed dim (required).
82
+ dropout: the dropout value (default=0.1).
83
+ max_len: the max. length of the incoming sequence (default=5000).
84
+ Examples:
85
+ >>> pos_encoder = PositionalEncoding(d_model)
86
+ """
87
+
88
+ def __init__(self, d_model, dropout=0.1, max_len=5000):
89
+ super(PositionalEncoding, self).__init__()
90
+ self.dropout = nn.Dropout(p=dropout)
91
+
92
+ pe = torch.zeros(max_len, d_model)
93
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
94
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
95
+ pe[:, 0::2] = torch.sin(position * div_term)
96
+ pe[:, 1::2] = torch.cos(position * div_term)
97
+ pe = pe.unsqueeze(0).transpose(0, 1)
98
+ # self.register_buffer('pe', pe)
99
+ self.register_parameter('pe', nn.Parameter(pe, requires_grad=False))
100
+
101
+ def forward(self, x):
102
+ r"""Inputs of forward function
103
+ Args:
104
+ x: the sequence fed to the positional encoder model (required).
105
+ Shape:
106
+ x: [sequence length, batch size, embed dim]
107
+ output: [sequence length, batch size, embed dim]
108
+ Examples:
109
+ >>> output = pos_encoder(x)
110
+ """
111
+ x = x + self.pe[:x.size(0), :]
112
+ return self.dropout(x)
113
+
114
+
115
+ def precompute_freqs_cis(
116
+ seq_len: int,
117
+ n_elem: int,
118
+ base: int = 10000,
119
+ dtype: torch.dtype = torch.bfloat16,
120
+ ):
121
+ freqs = 1.0 / (
122
+ base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
123
+ )
124
+ t = torch.arange(seq_len, device=freqs.device)
125
+ freqs = torch.outer(t, freqs)
126
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
127
+ cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
128
+
129
+ return cache.to(dtype=dtype)
130
+
131
+
132
+ @torch.jit.script
133
+ def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
134
+ """
135
+ In-place RoPE. Credits to Katherine Crowson:
136
+ x shape (b_sz, n_head, s_len, d_head).
137
+ cos, sin shape (s_len, d_head // 2).
138
+ """
139
+
140
+ x = x.permute(0, 2, 1, 3)
141
+ d = x.shape[-1] // 2
142
+ cos = freqs_cis[..., 0][None, :, None]
143
+ sin = freqs_cis[..., 1][None, :, None]
144
+ x1, x2 = x[..., :d], x[..., d : d * 2]
145
+ tmp = x1.clone()
146
+ # x1.mul_(cos).addcmul_(x2, sin, value=-1)
147
+ # x2.mul_(cos).addcmul_(tmp, sin, value=1) ##was throwing some error: RuntimeError: Output 0 of SliceBackward0 is a view and is being modified inplace. This view is the output of a function that returns multiple views. Such functions do not allow the output views to be modified inplace. You should replace the inplace operation by an out-of-place one.
148
+ x1_new = x1.mul(cos) - x2.mul(sin)
149
+ x2_new = x2.mul(cos) + tmp.mul(sin)
150
+ x = torch.cat((x1_new, x2_new), dim=-1)
151
+ x = x.permute(0, 2, 1, 3)
152
+
153
+ return x
154
+
155
+
156
+ class MultiHeadSelfAttention(nn.Module):
157
+ r"""Multi-head self-attention module.
158
+
159
+ Args:
160
+ embed_dim (int): The input embedding dimension.
161
+ num_heads (int, optional): The number of attention heads (default: 4).
162
+ dropout (float, optional): The dropout probability (default: 0.1).
163
+ device (torch.device, optional): The device to use (default: None).
164
+ dtype (torch.dtype, optional): The data type to use (default: None).
165
+
166
+ Attributes:
167
+ dim_head (int): The dimension of each attention head.
168
+ scale (float): The scaling factor for attention scores.
169
+ heads (int): The number of attention heads.
170
+ to_qkv (nn.Linear): Linear layer for projecting input to query, key, and value.
171
+ to_out (nn.Linear): Linear layer for projecting attention output to the original embedding dimension.
172
+ dropout (nn.Dropout): Dropout layer.
173
+
174
+ """
175
+
176
+ def __init__(
177
+ self,
178
+ embed_dim: int,
179
+ num_heads: int = 4,
180
+ dropout: float = 0.1,
181
+ batch_first: bool = True,
182
+ device: Optional[torch.device] = None,
183
+ dtype: Optional[torch.dtype] = None,
184
+ ):
185
+ factory_kwargs = {'device': device, 'dtype': dtype}
186
+ super().__init__()
187
+ self.embed_dim = embed_dim
188
+ self.batch_first = batch_first
189
+ self.dim_head = embed_dim // num_heads
190
+ self.scale = self.dim_head ** -0.5
191
+ self.heads = num_heads
192
+ hidden_dim = self.dim_head * num_heads
193
+ self.to_qkv = nn.Linear(embed_dim, hidden_dim * 3, bias=False, **factory_kwargs)
194
+ self.to_out = nn.Linear(hidden_dim, embed_dim, bias=False, **factory_kwargs)
195
+ self.dropout = nn.Dropout(dropout)
196
+
197
+ def forward(self, x: torch.Tensor, is_causal: bool = True) -> torch.Tensor:
198
+
199
+ r"""Forward pass of the multi-head self-attention module.
200
+
201
+ Args:
202
+ x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embed_dim).
203
+
204
+ Returns:
205
+ torch.Tensor: The output tensor of shape (batch_size, sequence_length, embed_dim).
206
+
207
+ """
208
+ if not self.batch_first:
209
+ x = x.transpose(0, 1)
210
+ b, n, _ = x.size()
211
+ q, k, v = torch.chunk(self.to_qkv(x), chunks=3, dim=-1)
212
+ q, k, v = map(lambda t: t.contiguous().view(b, self.heads, n, -1), (q, k, v))
213
+
214
+ self.freqs_cis = precompute_freqs_cis(
215
+ seq_len=n,
216
+ n_elem=self.embed_dim // self.heads,
217
+ base=10000,
218
+ dtype=x.dtype,
219
+ ).to(x.device)
220
+ freqs_cis = self.freqs_cis[: x.shape[1]]
221
+ # q = apply_rotary_emb(q, freqs_cis)
222
+ # k = apply_rotary_emb(k, freqs_cis)
223
+ out = torch.nn.functional.scaled_dot_product_attention(q, k, v, is_causal=is_causal)
224
+ out = out.contiguous().view(b, n, -1)
225
+ out = self.dropout(out)
226
+ return self.to_out(out)
227
+
228
+
229
+ class Transformer(Module):
230
+ r"""A transformer model.
231
+
232
+ User is able to modify the attributes as needed. The architecture
233
+ is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
234
+ Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
235
+ Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
236
+ Processing Systems, pages 6000-6010.
237
+
238
+ Args:
239
+ d_model: the number of expected features in the encoder/decoder inputs (default=512).
240
+ nhead: the number of heads in the multiheadattention models (default=8).
241
+ num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
242
+ num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
243
+ dim_feedforward: the dimension of the feedforward network model (default=2048).
244
+ use_moe: if True, use MoE instead of linear layer for feedforward network (default=False).
245
+ dropout: the dropout value (default=0.1).
246
+ activation: the activation function of encoder/decoder intermediate layer, can be a string
247
+ ("relu" or "gelu") or a unary callable. Default: relu
248
+ custom_encoder: custom encoder (default=None).
249
+ custom_decoder: custom decoder (default=None).
250
+ layer_norm_eps: the eps value in layer normalization components (default=1e-5).
251
+ batch_first: If ``True``, then the input and output tensors are provided
252
+ as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
253
+ norm_first: if ``True``, encoder and decoder layers will perform LayerNorms before
254
+ other attention and feedforward operations, otherwise after. Default: ``False`` (after).
255
+ bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
256
+ bias. Default: ``True``.
257
+
258
+ Examples::
259
+ >>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
260
+ >>> src = torch.rand((32, 512))
261
+ >>> tgt = torch.rand((32, 512, 30000))
262
+ >>> out = transformer_model(src, tgt)
263
+
264
+ Note: A full example to apply nn.Transformer module for the word language model is available in
265
+ https://github.com/pytorch/examples/tree/master/word_language_model
266
+ """
267
+
268
+ def __init__(self, n_vocab: int = 30000, d_model: int = 512, nhead: int = 8, max_len: int = 5000,
269
+ num_decoder_layers: int = 6, dim_feedforward: int = 2048, use_moe: bool = False,
270
+ num_experts: int = 16, dropout: float = 0.1,
271
+ activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
272
+ layer_norm_eps: float = 1e-5, batch_first: bool = True, norm_first: bool = False,
273
+ bias: bool = True, device=None, dtype=None) -> None:
274
+ factory_kwargs = {'device': device, 'dtype': dtype}
275
+ super().__init__()
276
+ torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
277
+
278
+ self.use_moe = use_moe
279
+
280
+ self.input_emb = nn.Embedding(n_vocab, d_model, **factory_kwargs)
281
+ self.pos_encoder = PositionalEncoding(d_model, dropout, max_len).to(device)
282
+
283
+ # Load the FLAN-T5 encoder
284
+ self.encoder = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device)
285
+ # Freeze the encoder
286
+ for param in self.encoder.parameters():
287
+ param.requires_grad = False
288
+
289
+ decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, use_moe, num_experts, dropout,
290
+ activation, layer_norm_eps, batch_first, norm_first,
291
+ bias, **factory_kwargs)
292
+ decoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
293
+ self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, use_moe, decoder_norm)
294
+
295
+ self.projection = nn.Linear(d_model, n_vocab).to(device)
296
+
297
+ self._reset_parameters()
298
+
299
+ self.d_model = d_model
300
+ self.nhead = nhead
301
+
302
+ self.batch_first = batch_first
303
+
304
+ def forward(self, src: Tensor, src_mask: Tensor, tgt: Tensor, memory_mask: Optional[Tensor] = None,
305
+ memory_key_padding_mask: Optional[Tensor] = None, tgt_is_causal: bool = True,
306
+ memory_is_causal: bool = False) -> Tensor:
307
+ r"""Take in and process masked source/target sequences.
308
+
309
+ .. note::
310
+
311
+ If a boolean tensor is provided for any of the [src/tgt/memory]_mask arguments, positions with a ``True`` value are
312
+ not allowed to participate in the attention,
313
+ which is the opposite of the definition for :attr:`attn_mask`
314
+ in :func:`torch.nn.functional.scaled_dot_product_attention`.
315
+
316
+ Args:
317
+ src: the sequence to the encoder (required).
318
+ src_attn_mask: the attention mask for the src sequence (required).
319
+ tgt: the sequence to the decoder (required).
320
+ tgt_mask: the additive mask for the tgt sequence (optional).
321
+ memory_mask: the additive mask for the encoder output (optional).
322
+ tgt_key_padding_mask: the Tensor mask for tgt keys per batch (optional).
323
+ memory_key_padding_mask: the Tensor mask for memory keys per batch (optional).
324
+ tgt_is_causal: If specified, applies a causal mask as ``tgt_mask``.
325
+ Default: ``None``; try to detect a causal mask.
326
+ Warning:
327
+ ``tgt_is_causal`` provides a hint that ``tgt_mask`` is
328
+ the causal mask. Providing incorrect hints can result in
329
+ incorrect execution, including forward and backward
330
+ compatibility.
331
+ memory_is_causal: If specified, applies a causal mask as
332
+ ``memory_mask``.
333
+ Default: ``False``.
334
+ Warning:
335
+ ``memory_is_causal`` provides a hint that
336
+ ``memory_mask`` is the causal mask. Providing incorrect
337
+ hints can result in incorrect execution, including
338
+ forward and backward compatibility.
339
+
340
+ Shape:
341
+ - src: :math:`(S, S)` for unbatched input, :math:`(S, N)` if `batch_first=False` or
342
+ `(N, S)` if `batch_first=True`.
343
+ - src_mask: :math:`(S, S)` or :math:`(N\cdot\text{num\_heads}, S, S)`.
344
+ - tgt: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
345
+ `(N, T, E)` if `batch_first=True`.
346
+ - tgt_mask: :math:`(T, T)` or :math:`(N\cdot\text{num\_heads}, T, T)`.
347
+ - memory_mask: :math:`(T, S)`.
348
+ - src_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
349
+ - tgt_key_padding_mask: :math:`(T)` for unbatched input otherwise :math:`(N, T)`.
350
+ - memory_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
351
+
352
+ Note: [src/tgt/memory]_mask ensures that position :math:`i` is allowed to attend the unmasked
353
+ positions. If a BoolTensor is provided, positions with ``True``
354
+ are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
355
+ is provided, it will be added to the attention weight.
356
+ [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
357
+ the attention. If a BoolTensor is provided, the positions with the
358
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
359
+
360
+ - output: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
361
+ `(N, T, E)` if `batch_first=True`.
362
+
363
+ Note: Due to the multi-head attention architecture in the transformer model,
364
+ the output sequence length of a transformer is same as the input sequence
365
+ (i.e. target) length of the decoder.
366
+
367
+ where :math:`S` is the source sequence length, :math:`T` is the target sequence length, :math:`N` is the
368
+ batch size, :math:`E` is the feature number
369
+
370
+ Examples:
371
+ >>> # xdoctest: +SKIP
372
+ >>> output = transformer_model(src, tgt, src_mask=src_mask)
373
+ """
374
+ if src.dim() != tgt.dim():
375
+ raise RuntimeError("the number of dimensions in src and tgt must be equal")
376
+
377
+ memory = self.encoder(src, attention_mask=src_mask).last_hidden_state
378
+
379
+ tgt = self.input_emb(tgt) * math.sqrt(self.d_model)
380
+ tgt = self.pos_encoder(tgt)
381
+ # tgt = tgt + tgt_pos
382
+
383
+ if self.use_moe:
384
+ with torch.cuda.amp.autocast(enabled =False):
385
+ output, sum_total_aux_loss = self.decoder(tgt, memory, memory_mask=memory_mask,
386
+ memory_key_padding_mask=memory_key_padding_mask,
387
+ tgt_is_causal=tgt_is_causal, memory_is_causal=memory_is_causal)
388
+ else:
389
+ output = self.decoder(tgt, memory, memory_mask=memory_mask,
390
+ memory_key_padding_mask=memory_key_padding_mask,
391
+ tgt_is_causal=tgt_is_causal, memory_is_causal=memory_is_causal)
392
+
393
+ output = self.projection(output)
394
+ # output = F.log_softmax(output, dim=-1)
395
+
396
+ if self.use_moe:
397
+ return output, sum_total_aux_loss
398
+ else:
399
+ return output
400
+
401
+ def generate(self, src: Tensor, src_mask: Tensor, max_len: int = 100, temperature: float = 1.0):
402
+ ## ADD A START OF SEQUENCE TOKEN <SS> token to the src tensor
403
+ r"""Generate a sequence of tokens from the given inputs.
404
+
405
+ Args:
406
+ src: the sequence to the encoder (required).
407
+ src_mask: the attention mask for the src sequence (required).
408
+ max_len: the maximum length of the sequence to generate (default=100).
409
+ temperature: the temperature for the softmax (default=1.0).
410
+
411
+ Returns:
412
+ torch.Tensor: The generated sequence of tokens.
413
+
414
+ """
415
+ if src.dim() != 2:
416
+ raise RuntimeError("The src tensor should be 2-dimensional")
417
+ tgt_fin = torch.full((src.size(0), 1), 1, dtype=torch.long, device=src.device)
418
+ # values = [21631, 8, 10, 9, 6, 7, 17, 21632, 11474, 20626, 21151, 9426, 20627, 21143, 11476, 20640, 21143, 11477, 20655, 21145, 11476, 20669, 21145, 11477, 20683, 21145, 13527, 20697, 21146, 13529, 20712, 21145, 7013, 20769, 21143, 7006, 20769, 21143, 7006, 20769, 21141, 7009, 20769, 21143, 9426, 20797, 21144, 11474, 20797, 21173, 11476, 20812, 21144, 11477, 20826, 21145, 11476, 20840, 21145, 11477, 20855, 21145, 13527, 20869, 21144, 13529, 20883, 21143, 7006, 20940, 21139, 7013, 20940, 21140, 7006, 20940, 21147, 7009, 20940, 21147, 11474, 20969, 21144, 11474, 20969, 21170, 11476, 20983, 21144, 11477, 20997, 21145, 11476, 21012, 21144, 11477, 21026, 21144, 11479, 21040]
419
+ # values_tensor = torch.tensor(values, dtype=torch.long, device=src.device)
420
+ # tgt_fin = values_tensor.unsqueeze(0).repeat(src.size(0), 1)
421
+ for i in tqdm(range(max_len)):
422
+ max_index = tgt_fin.max()
423
+ # assert max_index < 21634, "tgt_fin contains index out of range. Adjust n_vocab or fix tgt_fin indices."
424
+ tgt = tgt_fin
425
+ if self.use_moe:
426
+ output, _ = self.froward(src, src_mask, tgt, memory_mask=None,
427
+ memory_key_padding_mask=None,
428
+ tgt_is_causal=True, memory_is_causal=False)
429
+ else:
430
+ output = self.forward(src, src_mask, tgt, memory_mask=None,
431
+ memory_key_padding_mask=None,
432
+ tgt_is_causal=True, memory_is_causal=False)
433
+ # logits = self.projection(output)
434
+ logits = output
435
+ output = F.log_softmax(logits/temperature, dim=-1)
436
+ output = output.view(-1, output.size(-1))
437
+ next_tokens = torch.multinomial(torch.exp(output), 1)[-1] # taking the last logit and adding to the sequence
438
+ tgt_fin = torch.cat((tgt_fin, next_tokens.unsqueeze(-1)), dim=1)
439
+ return tgt_fin[:, 1:]
440
+
441
+ @staticmethod
442
+ def generate_square_subsequent_mask(
443
+ sz: int,
444
+ device: Optional[torch.device] = None,
445
+ dtype: Optional[torch.dtype] = None,
446
+ ) -> Tensor:
447
+ r"""Generate a square causal mask for the sequence.
448
+
449
+ The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
450
+ """
451
+ return _generate_square_subsequent_mask(sz, dtype=dtype, device=device)
452
+
453
+
454
+ def _reset_parameters(self):
455
+ r"""Initiate parameters in the transformer model."""
456
+ for p in self.parameters():
457
+ if p.dim() > 1:
458
+ xavier_uniform_(p)
459
+
460
+
461
+
462
+
463
+ class TransformerEncoder(Module):
464
+ r"""TransformerEncoder is a stack of N encoder layers.
465
+
466
+ Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
467
+
468
+ Args:
469
+ encoder_layer: an instance of the TransformerEncoderLayer() class (required).
470
+ num_layers: the number of sub-encoder-layers in the encoder (required).
471
+ norm: the layer normalization component (optional).
472
+ enable_nested_tensor: if True, input will automatically convert to nested tensor
473
+ (and convert back on output). This will improve the overall performance of
474
+ TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
475
+
476
+ Examples::
477
+ >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
478
+ >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
479
+ >>> src = torch.rand(10, 32, 512)
480
+ >>> out = transformer_encoder(src)
481
+ """
482
+
483
+ __constants__ = ['norm']
484
+
485
+ def __init__(
486
+ self,
487
+ encoder_layer: "TransformerEncoderLayer",
488
+ num_layers: int,
489
+ norm: Optional[Module] = None,
490
+ enable_nested_tensor: bool = True,
491
+ mask_check: bool = True
492
+ ) -> None:
493
+ super().__init__()
494
+ torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
495
+ self.layers = _get_clones(encoder_layer, num_layers)
496
+ self.num_layers = num_layers
497
+ self.norm = norm
498
+ # this attribute saves the value providedat object construction
499
+ self.enable_nested_tensor = enable_nested_tensor
500
+ # this attribute controls whether nested tensors are used
501
+ self.use_nested_tensor = enable_nested_tensor
502
+ self.mask_check = mask_check
503
+
504
+ enc_layer = "encoder_layer"
505
+ why_not_sparsity_fast_path = ''
506
+ if not isinstance(encoder_layer, torch.nn.TransformerEncoderLayer):
507
+ why_not_sparsity_fast_path = f"{enc_layer} was not TransformerEncoderLayer"
508
+ elif encoder_layer.norm_first :
509
+ why_not_sparsity_fast_path = f"{enc_layer}.norm_first was True"
510
+ elif not encoder_layer.self_attn.batch_first:
511
+ why_not_sparsity_fast_path = (f"{enc_layer}.self_attn.batch_first was not True" +
512
+ "(use batch_first for better inference performance)")
513
+ elif not encoder_layer.self_attn._qkv_same_embed_dim:
514
+ why_not_sparsity_fast_path = f"{enc_layer}.self_attn._qkv_same_embed_dim was not True"
515
+ elif encoder_layer.self_attn.in_proj_bias is None:
516
+ why_not_sparsity_fast_path = f"{enc_layer}.self_attn was passed bias=False"
517
+ elif not encoder_layer.activation_relu_or_gelu:
518
+ why_not_sparsity_fast_path = f"{enc_layer}.activation_relu_or_gelu was not True"
519
+ elif not (encoder_layer.norm1.eps == encoder_layer.norm2.eps) :
520
+ why_not_sparsity_fast_path = f"{enc_layer}.norm1.eps was not equal to {enc_layer}.norm2.eps"
521
+ elif encoder_layer.self_attn.num_heads % 2 == 1:
522
+ why_not_sparsity_fast_path = f"{enc_layer}.self_attn.num_heads is odd"
523
+
524
+ if enable_nested_tensor and why_not_sparsity_fast_path:
525
+ warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
526
+ self.use_nested_tensor = False
527
+
528
+
529
+
530
+ def forward(
531
+ self,
532
+ src: Tensor,
533
+ mask: Optional[Tensor] = None,
534
+ src_key_padding_mask: Optional[Tensor] = None,
535
+ is_causal: Optional[bool] = None) -> Tensor:
536
+ r"""Pass the input through the encoder layers in turn.
537
+
538
+ Args:
539
+ src: the sequence to the encoder (required).
540
+ mask: the mask for the src sequence (optional).
541
+ src_key_padding_mask: the mask for the src keys per batch (optional).
542
+ is_causal: If specified, applies a causal mask as ``mask``.
543
+ Default: ``None``; try to detect a causal mask.
544
+ Warning:
545
+ ``is_causal`` provides a hint that ``mask`` is the
546
+ causal mask. Providing incorrect hints can result in
547
+ incorrect execution, including forward and backward
548
+ compatibility.
549
+
550
+ Shape:
551
+ see the docs in :class:`~torch.nn.Transformer`.
552
+ """
553
+ src_key_padding_mask = F._canonical_mask(
554
+ mask=src_key_padding_mask,
555
+ mask_name="src_key_padding_mask",
556
+ other_type=F._none_or_dtype(mask),
557
+ other_name="mask",
558
+ target_type=src.dtype
559
+ )
560
+
561
+ mask = F._canonical_mask(
562
+ mask=mask,
563
+ mask_name="mask",
564
+ other_type=None,
565
+ other_name="",
566
+ target_type=src.dtype,
567
+ check_other=False,
568
+ )
569
+
570
+ output = src
571
+ convert_to_nested = False
572
+ first_layer = self.layers[0]
573
+ src_key_padding_mask_for_layers = src_key_padding_mask
574
+ why_not_sparsity_fast_path = ''
575
+ str_first_layer = "self.layers[0]"
576
+ batch_first = first_layer.self_attn.batch_first
577
+ # is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
578
+
579
+ # if not is_fastpath_enabled:
580
+ # why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
581
+ if not hasattr(self, "use_nested_tensor"):
582
+ why_not_sparsity_fast_path = "use_nested_tensor attribute not present"
583
+ elif not self.use_nested_tensor:
584
+ why_not_sparsity_fast_path = "self.use_nested_tensor (set in init) was not True"
585
+ elif first_layer.training:
586
+ why_not_sparsity_fast_path = f"{str_first_layer} was in training mode"
587
+ elif not src.dim() == 3:
588
+ why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
589
+ elif src_key_padding_mask is None:
590
+ why_not_sparsity_fast_path = "src_key_padding_mask was None"
591
+ elif (((not hasattr(self, "mask_check")) or self.mask_check)
592
+ and not torch._nested_tensor_from_mask_left_aligned(src, src_key_padding_mask.logical_not())):
593
+ why_not_sparsity_fast_path = "mask_check enabled, and src and src_key_padding_mask was not left aligned"
594
+ elif output.is_nested:
595
+ why_not_sparsity_fast_path = "NestedTensor input is not supported"
596
+ elif mask is not None:
597
+ why_not_sparsity_fast_path = "src_key_padding_mask and mask were both supplied"
598
+ elif torch.is_autocast_enabled():
599
+ why_not_sparsity_fast_path = "autocast is enabled"
600
+
601
+ if not why_not_sparsity_fast_path:
602
+ tensor_args = (
603
+ src,
604
+ first_layer.self_attn.in_proj_weight,
605
+ first_layer.self_attn.in_proj_bias,
606
+ first_layer.self_attn.out_proj.weight,
607
+ first_layer.self_attn.out_proj.bias,
608
+ first_layer.norm1.weight,
609
+ first_layer.norm1.bias,
610
+ first_layer.norm2.weight,
611
+ first_layer.norm2.bias,
612
+ first_layer.linear1.weight,
613
+ first_layer.linear1.bias,
614
+ first_layer.linear2.weight,
615
+ first_layer.linear2.bias,
616
+ )
617
+ _supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
618
+ if torch.overrides.has_torch_function(tensor_args):
619
+ why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
620
+ elif src.device.type not in _supported_device_type:
621
+ why_not_sparsity_fast_path = f"src device is neither one of {_supported_device_type}"
622
+ elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
623
+ why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
624
+ "input/output projection weights or biases requires_grad")
625
+
626
+ if (not why_not_sparsity_fast_path) and (src_key_padding_mask is not None):
627
+ convert_to_nested = True
628
+ output = torch._nested_tensor_from_mask(output, src_key_padding_mask.logical_not(), mask_check=False)
629
+ src_key_padding_mask_for_layers = None
630
+
631
+ seq_len = _get_seq_len(src, batch_first)
632
+ is_causal = _detect_is_causal_mask(mask, is_causal, seq_len)
633
+
634
+ for mod in self.layers:
635
+ output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers)
636
+
637
+ if convert_to_nested:
638
+ output = output.to_padded_tensor(0., src.size())
639
+
640
+ if self.norm is not None:
641
+ output = self.norm(output)
642
+
643
+ return output
644
+
645
+
646
+
647
+
648
+ class TransformerDecoder(Module):
649
+ r"""TransformerDecoder is a stack of N decoder layers.
650
+
651
+ Args:
652
+ decoder_layer: an instance of the TransformerDecoderLayer() class (required).
653
+ num_layers: the number of sub-decoder-layers in the decoder (required).
654
+ norm: the layer normalization component (optional).
655
+
656
+ Examples::
657
+ >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
658
+ >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
659
+ >>> memory = torch.rand(10, 32, 512)
660
+ >>> tgt = torch.rand(20, 32, 512)
661
+ >>> out = transformer_decoder(tgt, memory)
662
+ """
663
+
664
+ __constants__ = ['norm']
665
+
666
+ def __init__(
667
+ self,
668
+ decoder_layer: "TransformerDecoderLayer",
669
+ num_layers: int,
670
+ use_moe: bool = False,
671
+ norm: Optional[Module] = None
672
+ ) -> None:
673
+ super().__init__()
674
+ torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
675
+ self.layers = _get_clones(decoder_layer, num_layers)
676
+ self.num_layers = num_layers
677
+ self.use_moe = use_moe
678
+ self.norm = norm
679
+
680
+
681
+ def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
682
+ memory_mask: Optional[Tensor] = None,
683
+ memory_key_padding_mask: Optional[Tensor] = None, tgt_is_causal: Optional[bool] = None,
684
+ memory_is_causal: bool = False) -> Tensor:
685
+ r"""Pass the inputs (and mask) through the decoder layer in turn.
686
+
687
+ Args:
688
+ tgt: the sequence to the decoder (required).
689
+ memory: the sequence from the last layer of the encoder (required).
690
+ tgt_mask: the mask for the tgt sequence (optional).
691
+ memory_mask: the mask for the memory sequence (optional).
692
+ memory_key_padding_mask: the mask for the memory keys per batch (optional).
693
+ tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
694
+ Default: ``None``; try to detect a causal mask.
695
+ Warning:
696
+ ``tgt_is_causal`` provides a hint that ``tgt_mask`` is
697
+ the causal mask. Providing incorrect hints can result in
698
+ incorrect execution, including forward and backward
699
+ compatibility.
700
+ memory_is_causal: If specified, applies a causal mask as
701
+ ``memory mask``.
702
+ Default: ``False``.
703
+ Warning:
704
+ ``memory_is_causal`` provides a hint that
705
+ ``memory_mask`` is the causal mask. Providing incorrect
706
+ hints can result in incorrect execution, including
707
+ forward and backward compatibility.
708
+
709
+ Shape:
710
+ see the docs in :class:`~torch.nn.Transformer`.
711
+ """
712
+ output = tgt
713
+
714
+ seq_len = _get_seq_len(tgt, self.layers[0].self_attn.batch_first)
715
+ tgt_is_causal = _detect_is_causal_mask(tgt_mask, tgt_is_causal, seq_len)
716
+ # print(f'target is causal: {tgt_is_causal}')
717
+
718
+ if self.use_moe:
719
+ sum_total_aux_loss = 0
720
+ for mod in self.layers:
721
+ output, total_aux_loss, balance_loss, router_z_loss = mod(output, memory,
722
+ memory_mask=memory_mask,
723
+ memory_key_padding_mask=memory_key_padding_mask,
724
+ tgt_is_causal=tgt_is_causal,
725
+ memory_is_causal=memory_is_causal)
726
+ sum_total_aux_loss += total_aux_loss
727
+ else:
728
+ for mod in self.layers:
729
+ output = mod(output, memory,
730
+ memory_mask=memory_mask,
731
+ memory_key_padding_mask=memory_key_padding_mask,
732
+ tgt_is_causal=tgt_is_causal,
733
+ memory_is_causal=memory_is_causal)
734
+
735
+ if self.norm is not None:
736
+ output = self.norm(output)
737
+
738
+ if self.use_moe:
739
+ return output, sum_total_aux_loss
740
+ else:
741
+ return output
742
+
743
+
744
+
745
+ class TransformerEncoderLayer(Module):
746
+ r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
747
+
748
+ This standard encoder layer is based on the paper "Attention Is All You Need".
749
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
750
+ Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
751
+ Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
752
+ in a different way during application.
753
+
754
+ TransformerEncoderLayer can handle either traditional torch.tensor inputs,
755
+ or Nested Tensor inputs. Derived classes are expected to similarly accept
756
+ both input formats. (Not all combinations of inputs are currently
757
+ supported by TransformerEncoderLayer while Nested Tensor is in prototype
758
+ state.)
759
+
760
+ If you are implementing a custom layer, you may derive it either from
761
+ the Module or TransformerEncoderLayer class. If your custom layer
762
+ supports both torch.Tensors and Nested Tensors inputs, make its
763
+ implementation a derived class of TransformerEncoderLayer. If your custom
764
+ Layer supports only torch.Tensor inputs, derive its implementation from
765
+ Module.
766
+
767
+ Args:
768
+ d_model: the number of expected features in the input (required).
769
+ nhead: the number of heads in the multiheadattention models (required).
770
+ dim_feedforward: the dimension of the feedforward network model (default=2048).
771
+ dropout: the dropout value (default=0.1).
772
+ activation: the activation function of the intermediate layer, can be a string
773
+ ("relu" or "gelu") or a unary callable. Default: relu
774
+ layer_norm_eps: the eps value in layer normalization components (default=1e-5).
775
+ batch_first: If ``True``, then the input and output tensors are provided
776
+ as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
777
+ norm_first: if ``True``, layer norm is done prior to attention and feedforward
778
+ operations, respectively. Otherwise it's done after. Default: ``False`` (after).
779
+ bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
780
+ bias. Default: ``True``.
781
+
782
+ Examples::
783
+ >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
784
+ >>> src = torch.rand(10, 32, 512)
785
+ >>> out = encoder_layer(src)
786
+
787
+ Alternatively, when ``batch_first`` is ``True``:
788
+ >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
789
+ >>> src = torch.rand(32, 10, 512)
790
+ >>> out = encoder_layer(src)
791
+
792
+ Fast path:
793
+ forward() will use a special optimized implementation described in
794
+ `FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following
795
+ conditions are met:
796
+
797
+ - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor
798
+ argument ``requires_grad``
799
+ - training is disabled (using ``.eval()``)
800
+ - batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``)
801
+ - activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu``
802
+ - at most one of ``src_mask`` and ``src_key_padding_mask`` is passed
803
+ - if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask``
804
+ nor ``src_key_padding_mask`` is passed
805
+ - the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case
806
+ unless the caller has manually modified one without modifying the other)
807
+
808
+ If the optimized implementation is in use, a
809
+ `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be
810
+ passed for ``src`` to represent padding more efficiently than using a padding
811
+ mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be
812
+ returned, and an additional speedup proportional to the fraction of the input that
813
+ is padding can be expected.
814
+
815
+ .. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
816
+ https://arxiv.org/abs/2205.14135
817
+
818
+ """
819
+
820
+ __constants__ = ['norm_first']
821
+
822
+ def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
823
+ activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
824
+ layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
825
+ bias: bool = True, device=None, dtype=None) -> None:
826
+ factory_kwargs = {'device': device, 'dtype': dtype}
827
+ super().__init__()
828
+ self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout,
829
+ bias=bias, batch_first=batch_first,
830
+ **factory_kwargs)
831
+ # Implementation of Feedforward model
832
+ self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
833
+ self.dropout = Dropout(dropout)
834
+ self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
835
+
836
+ self.norm_first = norm_first
837
+ self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
838
+ self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
839
+ self.dropout1 = Dropout(dropout)
840
+ self.dropout2 = Dropout(dropout)
841
+
842
+ # Legacy string support for activation function.
843
+ if isinstance(activation, str):
844
+ activation = _get_activation_fn(activation)
845
+
846
+ # We can't test self.activation in forward() in TorchScript,
847
+ # so stash some information about it instead.
848
+ if activation is F.relu or isinstance(activation, torch.nn.ReLU):
849
+ self.activation_relu_or_gelu = 1
850
+ elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
851
+ self.activation_relu_or_gelu = 2
852
+ else:
853
+ self.activation_relu_or_gelu = 0
854
+ self.activation = activation
855
+
856
+ def __setstate__(self, state):
857
+ super().__setstate__(state)
858
+ if not hasattr(self, 'activation'):
859
+ self.activation = F.relu
860
+
861
+
862
+
863
+ def forward(
864
+ self,
865
+ src: Tensor,
866
+ src_mask: Optional[Tensor] = None,
867
+ src_key_padding_mask: Optional[Tensor] = None,
868
+ is_causal: bool = False) -> Tensor:
869
+ r"""Pass the input through the encoder layer.
870
+
871
+ Args:
872
+ src: the sequence to the encoder layer (required).
873
+ src_mask: the mask for the src sequence (optional).
874
+ src_key_padding_mask: the mask for the src keys per batch (optional).
875
+ is_causal: If specified, applies a causal mask as ``src mask``.
876
+ Default: ``False``.
877
+ Warning:
878
+ ``is_causal`` provides a hint that ``src_mask`` is the
879
+ causal mask. Providing incorrect hints can result in
880
+ incorrect execution, including forward and backward
881
+ compatibility.
882
+
883
+ Shape:
884
+ see the docs in :class:`~torch.nn.Transformer`.
885
+ """
886
+ src_key_padding_mask = F._canonical_mask(
887
+ mask=src_key_padding_mask,
888
+ mask_name="src_key_padding_mask",
889
+ other_type=F._none_or_dtype(src_mask),
890
+ other_name="src_mask",
891
+ target_type=src.dtype
892
+ )
893
+
894
+ src_mask = F._canonical_mask(
895
+ mask=src_mask,
896
+ mask_name="src_mask",
897
+ other_type=None,
898
+ other_name="",
899
+ target_type=src.dtype,
900
+ check_other=False,
901
+ )
902
+
903
+ # is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
904
+
905
+ # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
906
+ why_not_sparsity_fast_path = ''
907
+ # if not is_fastpath_enabled:
908
+ # why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
909
+ if not src.dim() == 3:
910
+ why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
911
+ elif self.training:
912
+ why_not_sparsity_fast_path = "training is enabled"
913
+ elif not self.self_attn.batch_first:
914
+ why_not_sparsity_fast_path = "self_attn.batch_first was not True"
915
+ elif self.self_attn.in_proj_bias is None:
916
+ why_not_sparsity_fast_path = "self_attn was passed bias=False"
917
+ elif not self.self_attn._qkv_same_embed_dim:
918
+ why_not_sparsity_fast_path = "self_attn._qkv_same_embed_dim was not True"
919
+ elif not self.activation_relu_or_gelu:
920
+ why_not_sparsity_fast_path = "activation_relu_or_gelu was not True"
921
+ elif not (self.norm1.eps == self.norm2.eps):
922
+ why_not_sparsity_fast_path = "norm1.eps is not equal to norm2.eps"
923
+ elif src.is_nested and (src_key_padding_mask is not None or src_mask is not None):
924
+ why_not_sparsity_fast_path = "neither src_key_padding_mask nor src_mask are not supported with NestedTensor input"
925
+ elif self.self_attn.num_heads % 2 == 1:
926
+ why_not_sparsity_fast_path = "num_head is odd"
927
+ elif torch.is_autocast_enabled():
928
+ why_not_sparsity_fast_path = "autocast is enabled"
929
+ if not why_not_sparsity_fast_path:
930
+ tensor_args = (
931
+ src,
932
+ self.self_attn.in_proj_weight,
933
+ self.self_attn.in_proj_bias,
934
+ self.self_attn.out_proj.weight,
935
+ self.self_attn.out_proj.bias,
936
+ self.norm1.weight,
937
+ self.norm1.bias,
938
+ self.norm2.weight,
939
+ self.norm2.bias,
940
+ self.linear1.weight,
941
+ self.linear1.bias,
942
+ self.linear2.weight,
943
+ self.linear2.bias,
944
+ )
945
+
946
+ # We have to use list comprehensions below because TorchScript does not support
947
+ # generator expressions.
948
+ _supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
949
+ if torch.overrides.has_torch_function(tensor_args):
950
+ why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
951
+ elif not all((x.device.type in _supported_device_type) for x in tensor_args):
952
+ why_not_sparsity_fast_path = ("some Tensor argument's device is neither one of "
953
+ f"{_supported_device_type}")
954
+ elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
955
+ why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
956
+ "input/output projection weights or biases requires_grad")
957
+
958
+ if not why_not_sparsity_fast_path:
959
+ merged_mask, mask_type = self.self_attn.merge_masks(src_mask, src_key_padding_mask, src)
960
+ return torch._transformer_encoder_layer_fwd(
961
+ src,
962
+ self.self_attn.embed_dim,
963
+ self.self_attn.num_heads,
964
+ self.self_attn.in_proj_weight,
965
+ self.self_attn.in_proj_bias,
966
+ self.self_attn.out_proj.weight,
967
+ self.self_attn.out_proj.bias,
968
+ self.activation_relu_or_gelu == 2,
969
+ self.norm_first,
970
+ self.norm1.eps,
971
+ self.norm1.weight,
972
+ self.norm1.bias,
973
+ self.norm2.weight,
974
+ self.norm2.bias,
975
+ self.linear1.weight,
976
+ self.linear1.bias,
977
+ self.linear2.weight,
978
+ self.linear2.bias,
979
+ merged_mask,
980
+ mask_type,
981
+ )
982
+
983
+
984
+ x = src
985
+ if self.norm_first:
986
+ x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask, is_causal=is_causal)
987
+ x = x + self._ff_block(self.norm2(x))
988
+ else:
989
+ x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, is_causal=is_causal))
990
+ x = self.norm2(x + self._ff_block(x))
991
+
992
+ return x
993
+
994
+
995
+ # self-attention block
996
+ def _sa_block(self, x: Tensor,
997
+ attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
998
+ x = self.self_attn(x, x, x,
999
+ attn_mask=attn_mask,
1000
+ key_padding_mask=key_padding_mask,
1001
+ need_weights=False, is_causal=is_causal)[0]
1002
+ return self.dropout1(x)
1003
+
1004
+ # feed forward block
1005
+ def _ff_block(self, x: Tensor) -> Tensor:
1006
+ x = self.linear2(self.dropout(self.activation(self.linear1(x))))
1007
+ return self.dropout2(x)
1008
+
1009
+
1010
+
1011
+
1012
+ class TransformerDecoderLayer(Module):
1013
+ r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
1014
+
1015
+ This standard decoder layer is based on the paper "Attention Is All You Need".
1016
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
1017
+ Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
1018
+ Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
1019
+ in a different way during application.
1020
+
1021
+ Args:
1022
+ d_model: the number of expected features in the input (required).
1023
+ nhead: the number of heads in the multiheadattention models (required).
1024
+ dim_feedforward: the dimension of the feedforward network model (default=2048).
1025
+ dropout: the dropout value (default=0.1).
1026
+ activation: the activation function of the intermediate layer, can be a string
1027
+ ("relu" or "gelu") or a unary callable. Default: relu
1028
+ layer_norm_eps: the eps value in layer normalization components (default=1e-5).
1029
+ batch_first: If ``True``, then the input and output tensors are provided
1030
+ as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
1031
+ norm_first: if ``True``, layer norm is done prior to self attention, multihead
1032
+ attention and feedforward operations, respectively. Otherwise it's done after.
1033
+ Default: ``False`` (after).
1034
+ bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
1035
+ bias. Default: ``True``.
1036
+
1037
+ Examples::
1038
+ >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
1039
+ >>> memory = torch.rand(10, 32, 512)
1040
+ >>> tgt = torch.rand(20, 32, 512)
1041
+ >>> out = decoder_layer(tgt, memory)
1042
+
1043
+ Alternatively, when ``batch_first`` is ``True``:
1044
+ >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True)
1045
+ >>> memory = torch.rand(32, 10, 512)
1046
+ >>> tgt = torch.rand(32, 20, 512)
1047
+ >>> out = decoder_layer(tgt, memory)
1048
+ """
1049
+
1050
+ __constants__ = ['norm_first']
1051
+
1052
+ def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, use_moe: bool = False, num_experts: int = 16,
1053
+ dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
1054
+ layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
1055
+ bias: bool = True, device=None, dtype=None) -> None:
1056
+ factory_kwargs = {'device': device, 'dtype': dtype}
1057
+ super().__init__()
1058
+
1059
+ self.self_attn = MultiHeadSelfAttention(d_model, nhead, dropout=dropout, batch_first=batch_first, **factory_kwargs)
1060
+ self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
1061
+ bias=bias, **factory_kwargs)
1062
+ self.use_moe = use_moe
1063
+
1064
+ if use_moe:
1065
+ self.moe = MoE(
1066
+ dim = d_model,
1067
+ num_experts = num_experts, # increase the experts (# parameters) of your model without increasing computation
1068
+ gating_top_n = 2, # default to top 2 gating, but can also be more (3 was tested in the paper with a lower threshold)
1069
+ threshold_train = 0.2, # at what threshold to accept a token to be routed to second expert and beyond - 0.2 was optimal for 2 expert routing, and apparently should be lower for 3
1070
+ threshold_eval = 0.2,
1071
+ capacity_factor_train = 1.25, # experts have fixed capacity per batch. we need some extra capacity in case gating is not perfectly balanced.
1072
+ capacity_factor_eval = 2., # capacity_factor_* should be set to a value >=1
1073
+ balance_loss_coef = 1e-2, # multiplier on the auxiliary expert balancing auxiliary loss
1074
+ router_z_loss_coef = 1e-3, # loss weight for router z-loss
1075
+ ).to(device)
1076
+ self.moe_block = SparseMoEBlock(
1077
+ self.moe,
1078
+ add_ff_before = True,
1079
+ add_ff_after = True
1080
+ ).to(device)
1081
+ else:
1082
+ # Implementation of Feedforward model
1083
+ self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
1084
+ self.dropout = Dropout(dropout)
1085
+ self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
1086
+
1087
+ self.norm_first = norm_first
1088
+ self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
1089
+ self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
1090
+ self.norm3 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
1091
+ self.dropout1 = Dropout(dropout)
1092
+ self.dropout2 = Dropout(dropout)
1093
+ self.dropout3 = Dropout(dropout)
1094
+
1095
+ # Legacy string support for activation function.
1096
+ if isinstance(activation, str):
1097
+ self.activation = _get_activation_fn(activation)
1098
+ else:
1099
+ self.activation = activation
1100
+
1101
+ def __setstate__(self, state):
1102
+ if 'activation' not in state:
1103
+ state['activation'] = F.relu
1104
+ super().__setstate__(state)
1105
+
1106
+
1107
+ def forward(
1108
+ self,
1109
+ tgt: Tensor,
1110
+ memory: Tensor,
1111
+ memory_mask: Optional[Tensor] = None,
1112
+ memory_key_padding_mask: Optional[Tensor] = None,
1113
+ tgt_is_causal: bool = False,
1114
+ memory_is_causal: bool = False,
1115
+ ) -> Tensor:
1116
+ r"""Pass the inputs (and mask) through the decoder layer.
1117
+
1118
+ Args:
1119
+ tgt: the sequence to the decoder layer (required).
1120
+ memory: the sequence from the last layer of the encoder (required).
1121
+ memory_mask: the mask for the memory sequence (optional).
1122
+ memory_key_padding_mask: the mask for the memory keys per batch (optional).
1123
+ tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
1124
+ Default: ``False``.
1125
+ Warning:
1126
+ ``tgt_is_causal`` provides a hint that ``tgt_mask`` is
1127
+ the causal mask. Providing incorrect hints can result in
1128
+ incorrect execution, including forward and backward
1129
+ compatibility.
1130
+ memory_is_causal: If specified, applies a causal mask as
1131
+ ``memory mask``.
1132
+ Default: ``False``.
1133
+ Warning:
1134
+ ``memory_is_causal`` provides a hint that
1135
+ ``memory_mask`` is the causal mask. Providing incorrect
1136
+ hints can result in incorrect execution, including
1137
+ forward and backward compatibility.
1138
+
1139
+ Shape:
1140
+ see the docs in :class:`~torch.nn.Transformer`.
1141
+ """
1142
+ # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
1143
+
1144
+ x = tgt
1145
+ # print(f'target is causal: {tgt_is_causal}')
1146
+ if self.norm_first:
1147
+ x = x + self._sa_block(self.norm1(x), tgt_is_causal)
1148
+ x = x + self._mha_block(self.norm2(x), memory, memory_mask, memory_key_padding_mask, memory_is_causal)
1149
+ if self.use_moe:
1150
+ m, total_aux_loss, balance_loss, router_z_loss = self.moe_block(x)
1151
+ x = x + m
1152
+ else:
1153
+ x = x + self._ff_block(self.norm3(x))
1154
+ else:
1155
+ x = self.norm1(x + self._sa_block(x, tgt_is_causal))
1156
+ x = self.norm2(x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask, memory_is_causal))
1157
+ if self.use_moe:
1158
+ m, total_aux_loss, balance_loss, router_z_loss = self.moe_block(x)
1159
+ x = x + m
1160
+ else:
1161
+ x = self.norm3(x + self._ff_block(x))
1162
+
1163
+ if self.use_moe:
1164
+ return x, total_aux_loss, balance_loss, router_z_loss
1165
+ else:
1166
+ return x
1167
+
1168
+
1169
+ # self-attention block
1170
+ def _sa_block(self, x: Tensor,
1171
+ is_causal: bool = False) -> Tensor:
1172
+ x = self.self_attn(x, is_causal=is_causal)
1173
+ return self.dropout1(x)
1174
+
1175
+ # multihead attention block
1176
+ def _mha_block(self, x: Tensor, mem: Tensor,
1177
+ attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
1178
+ x = self.multihead_attn(x, mem, mem,
1179
+ attn_mask=attn_mask,
1180
+ key_padding_mask=key_padding_mask,
1181
+ is_causal=is_causal,
1182
+ need_weights=False)[0]
1183
+ return self.dropout2(x)
1184
+
1185
+ # feed forward block
1186
+ def _ff_block(self, x: Tensor) -> Tensor:
1187
+ x = self.linear2(self.dropout(self.activation(self.linear1(x))))
1188
+ return self.dropout3(x)
1189
+
1190
+
1191
+
1192
+ def _get_clones(module, N):
1193
+ # FIXME: copy.deepcopy() is not defined on nn.module
1194
+ return ModuleList([copy.deepcopy(module) for i in range(N)])
1195
+
1196
+
1197
+ def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
1198
+ if activation == "relu":
1199
+ return F.relu
1200
+ elif activation == "gelu":
1201
+ return F.gelu
1202
+
1203
+ raise RuntimeError(f"activation should be relu/gelu, not {activation}")
1204
+
1205
+
1206
+ def _detect_is_causal_mask(
1207
+ mask: Optional[Tensor],
1208
+ is_causal: Optional[bool] = None,
1209
+ size: Optional[int] = None,
1210
+ ) -> bool:
1211
+ """Return whether the given attention mask is causal.
1212
+
1213
+ Warning:
1214
+ If ``is_causal`` is not ``None``, its value will be returned as is. If a
1215
+ user supplies an incorrect ``is_causal`` hint,
1216
+
1217
+ ``is_causal=False`` when the mask is in fact a causal attention.mask
1218
+ may lead to reduced performance relative to what would be achievable
1219
+ with ``is_causal=True``;
1220
+ ``is_causal=True`` when the mask is in fact not a causal attention.mask
1221
+ may lead to incorrect and unpredictable execution - in some scenarios,
1222
+ a causal mask may be applied based on the hint, in other execution
1223
+ scenarios the specified mask may be used. The choice may not appear
1224
+ to be deterministic, in that a number of factors like alignment,
1225
+ hardware SKU, etc influence the decision whether to use a mask or
1226
+ rely on the hint.
1227
+ ``size`` if not None, check whether the mask is a causal mask of the provided size
1228
+ Otherwise, checks for any causal mask.
1229
+ """
1230
+ # Prevent type refinement
1231
+ make_causal = (is_causal is True)
1232
+
1233
+ if is_causal is None and mask is not None:
1234
+ sz = size if size is not None else mask.size(-2)
1235
+ causal_comparison = _generate_square_subsequent_mask(
1236
+ sz, device=mask.device, dtype=mask.dtype)
1237
+
1238
+ # Do not use `torch.equal` so we handle batched masks by
1239
+ # broadcasting the comparison.
1240
+ if mask.size() == causal_comparison.size():
1241
+ make_causal = bool((mask == causal_comparison).all())
1242
+ else:
1243
+ make_causal = False
1244
+
1245
+ return make_causal
1246
+
1247
+ def check_instruments(genereated_seq):
1248
+ ins_present = []
1249
+ ins_count = 0
1250
+ instrument_list = ["piano", "chromatic", "organ", "guitar", "bass", "strings", "ensemble", "brass", "reed", "drum", "pipe", "synth_lead", "synth_pad", "synth_effect", "ethnic", "percussive", "sfx"]
1251
+ for token in genereated_seq:
1252
+ try:
1253
+ ins, pitch, vel = token
1254
+ # print(str(ins))
1255
+ except ValueError:
1256
+ try:
1257
+ ins, pitch = token
1258
+ except ValueError:
1259
+ ins = token
1260
+ if str(ins) in instrument_list:
1261
+ # print('coming here')
1262
+
1263
+ if ('prefix', 'instrument', str(ins)) not in ins_present and ins_count < 15:
1264
+ ins_count += 1
1265
+ print(f'adding instrument {ins}')
1266
+ ins_present.append(('prefix', 'instrument', str(ins)))
1267
+ if ins_present != []:
1268
+ genereated_seq = ins_present + ['<S>']+ genereated_seq +['<E>']
1269
+ else:
1270
+ genereated_seq = genereated_seq +['<E>']
1271
+ print(genereated_seq)
1272
+ return genereated_seq
1273
+
1274
+ def process_caption(gpu_id, captions, model, tokenizer, r_tokenizer):
1275
+ device = gpu_id
1276
+ torch.cuda.set_device(gpu_id)
1277
+ model.to(gpu_id)
1278
+ model.eval()
1279
+ for caption in captions:
1280
+ src = caption['caption']
1281
+ location = caption['location']
1282
+ #src = "A cinematic electronic soundtrack that evokes an epic and dark atmosphere, featuring cello, contrabass, and drums. The song is set in A minor with a moderate tempo and a 4/4 time signature, creating an emotional and action-packed ambiance suitable for film."
1283
+ '''
1284
+ example 1: "A cheerful and melodic pop Christmas song featuring piano, acoustic guitar, vibraphone, bass, and drums, set in the key of Eb minor with a fast tempo of 123 bpm and a 4/4 time signature, creating a joyful and relaxing atmosphere."lmd_full/1/1b9f5f325c2080d345d877f590aa3dbe.mid
1285
+ example 2: "A melodic electronic song with ambient elements, featuring piano, acoustic guitar, alto saxophone, string ensemble, and electric bass. Set in G minor with a 4/4 time signature, it moves at a lively Presto tempo. The composition evokes a blend of relaxation and darkness, with hints of happiness and a meditative quality."lmd_full/1/152891ac63017b234c33e75e4a4a28c5.mid
1286
+ example 3: "This motivational electronic and pop song features a clean electric guitar, rock organ, synth voice, acoustic guitar, and vibraphone, creating a melodic and uplifting atmosphere. Set in the key of G# minor with a 4/4 time signature, the track moves at an energetic Allegro tempo of 120 beats per minute. The chord progression of Bbm7 and F# adds to the song's inspiring and corporate feel." lmd_full/1/14347e50e9e8149a9da09f49b188180b.mid
1287
+ example 4: "This short electronic song in C minor features a brass section, string ensemble, tenor saxophone, clean electric guitar, and slap bass, creating a melodic and slightly dark atmosphere. With a tempo of 124 BPM (Allegro) and a 4/4 time signature, the track incorporates a chord progression of C7/E, Eb6, and Bbm6, adding a touch of corporate and motivational vibes to the overall composition." lmd_full/1/1dc4cd50a5509d8042d27d80bc7e668e.mid
1288
+ example 5: "An energetic and melodic electronic trance track with a space and retro vibe, featuring drums, distortion guitar, flute, synth bass, and slap bass. Set in A minor with a fast tempo of 138 BPM, the song maintains a 4/4 time signature throughout its duration." lmd_full/3/3328b854ebe7a2fc9a746ede74c410ae.mid
1289
+ example 6: "A short but energetic rock fragment in C minor, featuring overdriven guitars, electric bass, and drums, with a vivacious tempo of 155 BPM and a 4/4 time signature, evoking a blend of dark and melodic tones." lmd_full/4/4c2232688c5f869b8470a408d197f5e3.mid
1290
+ example 7: "A classical piece with a cinematic flair, this composition is characterized by its fast tempo and 4/4 time signature. The soprano saxophone and flute take turns leading the melody, supported by the lush tones of the string ensemble, acoustic bass, and pan flute. Set in the key of F minor, the harmonic landscape is painted with the chords Gm7b5, Cm7b5, Fm7, Eaug, and Ab/Eb. The overall mood evokes images of film, with hints of Christmas, drama, documentary, and adventure." lmd_full/9/95bce1b489a11829b4fef39200291f60.mid
1291
+ exmaple 8: "A slow, dark, and emotional classical piece featuring cello, violin, and viola, likely to be used in a dramatic film soundtrack. The composition is in the key of C minor with a 4/4 time signature, and the main chord progression consists of Cm, G, Cm, and Fm." lmd_full/a/a22aad98ecfe4b3d8a353c2a72132834.mid
1292
+ example 9: "A slow and emotional classical piece, likely used in a film soundtrack, featuring a church organ as the sole instrument. Written in the key of Eb major with a 3/4 time signature, it evokes a sense of drama and romance. The chord progression of Bb7, Eb, and Ab contributes to the relaxing atmosphere throughout the song." lmd_full/a/af4302a036c9df71e0435df9b08f8c4b.mid
1293
+ example 10: "A cinematic electronic soundtrack that evokes an epic and dark atmosphere, featuring cello, contrabass, and drums. The song is set in A minor with a moderate tempo and a 4/4 time signature, creating an emotional and action-packed ambiance suitable for film." lmd_full/d/d920b6f451d7a72ae06f154e7c06c4c1.mid
1294
+ '''
1295
+ inputs = tokenizer(src, return_tensors='pt', padding=True, truncation=True)
1296
+ input_ids = nn.utils.rnn.pad_sequence(inputs.input_ids, batch_first=True, padding_value=0)
1297
+ input_ids = input_ids.to(device)
1298
+ attention_mask =nn.utils.rnn.pad_sequence(inputs.attention_mask, batch_first=True, padding_value=0)
1299
+ attention_mask = attention_mask.to(device)
1300
+ output = model.generate(input_ids, attention_mask,max_len=1000,temperature = 0.9)
1301
+ output_list = output[0].tolist()
1302
+ print(type(output_list))
1303
+ # generated_sequences = [dict_tokenizer[token] for token in output_list[0]]
1304
+ # generated_sequences = check_instruments(generated_sequences)
1305
+ # # generated_sequences = [('prefix', 'instrument', 'bass'), ('prefix', 'instrument', 'guitar'), ('prefix', 'instrument', 'piano'), ('prefix', 'instrument', 'guitar'), '<S>' ]+ generated_sequences +['<E>']
1306
+ # generated_sequences = [token for token in generated_sequences]# if token not in ["<SS>", "<S>", "<E>", "<SEP>"]]
1307
+ # # print("Generated sequences:", generated_sequences)
1308
+ # with open('../../generated_seq.pkl', 'wb') as f:
1309
+ # pickle.dump(generated_sequences, f)
1310
+ # mid_dict = aria_tokenizer.detokenize(generated_sequences)
1311
+ # mid = mid_dict.to_midi()
1312
+ generated_midi = r_tokenizer.decode(output_list)
1313
+ # print(type(generated_midi))
1314
+ generated_midi.dump_midi(f"../res/{location}")
1315
+
1316
+ def test_generate():
1317
+ device = 'cuda'
1318
+ artifact_folder = '../artifacts'
1319
+ tokenizer_filepath = os.path.join(artifact_folder, "vocab_remi.pkl")
1320
+ caption_dataset_path = '/root/text2midi/captions/train.json'
1321
+ print(f'caption_dataset_path: {caption_dataset_path}')
1322
+ # Load the tokenizer dictionary
1323
+ with open(tokenizer_filepath, "rb") as f:
1324
+ r_tokenizer = pickle.load(f)
1325
+ # print(tokenizer['<SS>'])
1326
+ # dict_tokenizer = {v: k for k, v in tokenizer.items()}
1327
+ # data_str = json.dumps(dict_tokenizer, indent=4)
1328
+ # with open('dict_output.txt', 'w') as file:
1329
+ # file.write(data_str)
1330
+ # Get the vocab size
1331
+ with jsonlines.open(caption_dataset_path) as reader:
1332
+ # captions = list(reader)
1333
+ captions = [line for line in reader if line.get('test_set') is True]
1334
+ print(f'Number of test set captions: {len(captions)}')
1335
+ with jsonlines.open(caption_dataset_path) as reader:
1336
+ captions = [line for line in reader if line.get('test_set') is True and not os.path.isfile('/root/test/text2midi/res/' + line.get('location'))]
1337
+ print(f'Number of test set captions not done: {len(captions)}')
1338
+ vocab_size = len(r_tokenizer)#+1
1339
+ print("Vocab size: ", vocab_size)
1340
+ # print(tokenizer[2171])
1341
+ # d_model =
1342
+ # model = Transformer(vocab_size, 768, 8, 8000, 8, 1024, False, 8, device=device)
1343
+ model = Transformer(vocab_size, 768, 8, 5000, 18, 1024, False, 8, device=device)
1344
+ # model = DataParallel(model)
1345
+ model.load_state_dict(torch.load('/root/test/text2midi/output_test_lr_symph/epoch_65/pytorch_model.bin', map_location=device))
1346
+ model.eval()
1347
+ tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
1348
+ num_gpus = torch.cuda.device_count()
1349
+ captions_per_gpu = len(captions) // num_gpus
1350
+ processes = []
1351
+ for i in range(num_gpus):
1352
+ start_idx = i * captions_per_gpu
1353
+ end_idx = (i + 1) * captions_per_gpu if i != num_gpus - 1 else len(captions)
1354
+ p = mp.Process(target=process_caption, args=(i, captions[start_idx:end_idx], model, tokenizer, r_tokenizer))
1355
+ p.start()
1356
+ processes.append(p)
1357
+
1358
+ for p in processes:
1359
+ p.join()
1360
+
1361
+ # src = "Played at 149 beats per minute in 2/4 time signature and the key of G major, classical piece with instruments: bassoon, clarinet, flute, horn, oboe, and trumpet."
1362
+ # src= 'Played at 114 beats per minute in 1/4 time signature and the key of g# minor, classical piece with the following instruments: clarinet, english horn, flute, horn, piccolo, trombone, and trumpet.'
1363
+
1364
+ # mid.save('../../output_1000_epoch_9_pos.mid')
1365
+ # print(output.shape)
1366
+
1367
+ if __name__ == "__main__":
1368
+ mp.set_start_method('spawn')
1369
+ test_generate()
1370
+ print("Done")
1371
+
1372
+ # if __name__ == "__main__":
1373
+ # device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
1374
+ # print(device)
1375
+
1376
+ # # Initialize the model
1377
+ # batch_size = 4
1378
+ # d_model = 768 # Model dimension (same as FLAN-T5 encoder output dimension)
1379
+ # nhead = 8 # Number of heads in the multiheadattention models
1380
+ # num_layers = 4 # Number of decoder layers
1381
+ # n_vocab = 22000 # Number of tokens in the vocabulary
1382
+ # max_len = 4000 # Maximum length of the input sequence
1383
+ # use_moe = True # Use mixture of experts
1384
+ # num_experts = 16 # Number of experts in the mixture of experts
1385
+ # t5_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
1386
+
1387
+
1388
+ # model = Transformer(n_vocab, d_model, nhead, max_len, num_decoder_layers=num_layers, dim_feedforward=1024, use_moe=use_moe, num_experts=num_experts, batch_first=True).to(device)
1389
+ # src = ["Hello, how are you?"] * batch_size
1390
+ # inputs = t5_tokenizer(src, return_tensors='pt', padding=True, truncation=True)
1391
+ # input_ids = inputs.input_ids.to(device)
1392
+ # attention_mask = inputs.attention_mask.to(device)
1393
+ # tgt = torch.randint(0, n_vocab, (batch_size, max_len)).to(device) # Shape: (batch_size, max_len)
1394
+ # print(input_ids.shape, tgt.shape)
1395
+
1396
+ # # Forward pass
1397
+ # time_start = time.time()
1398
+ # if use_moe:
1399
+ # out, aux_loss = model(input_ids, attention_mask, tgt, tgt_is_causal=True)
1400
+ # time_end = time.time()
1401
+ # print(aux_loss)
1402
+ # else:
1403
+ # out = model(input_ids, attention_mask, tgt)
1404
+ # time_end = time.time()
1405
+ # print(out.shape)
1406
+ # print(f"Time taken for forward pass: {time_end - time_start} seconds")
1407
+
1408
+ # # Print number of parameters
1409
+ # num_params = sum(p.numel() for p in model.parameters())
1410
+ # print(f"Number of parameters: {num_params}")
1411
+
1412
+ # # Print number of trainable parameters
1413
+ # num_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
1414
+ # print(f"Number of trainable parameters: {num_trainable_params}")
1415
+
1416
+ # # Print memory usage in GB
1417
+ # print(f"Memory allocated: {torch.cuda.memory_allocated(device) / 1e9} GB")