Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load the tokenizer and model | |
model_name = "unsloth/Llama-3.2-1B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Define the generation function | |
def generate_response(prompt): | |
inputs = tokenizer.encode(prompt, return_tensors="pt") | |
outputs = model.generate( | |
inputs, | |
max_length=512, | |
num_return_sequences=1, | |
do_sample=True, | |
temperature=0.7, | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=5, placeholder="Enter your prompt here..."), | |
outputs=gr.Textbox(label="Generated Response"), | |
title="Llama-3.2-1B-Instruct Model", | |
description="A simple interface to interact with the Llama-3.2-1B-Instruct model.", | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() |