Spaces:
Runtime error
Runtime error
File size: 1,271 Bytes
f352ab2 661fd4d f352ab2 661fd4d f352ab2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
#
import sys
sys.path.append('..')
import os
from fastapi import FastAPI
from pydantic import BaseModel
import wget
# torch
import torch
# utils
from preprocess import process_from_filename, process_raw_wav
from cnn import CNNetwork
# load model
model = CNNetwork()
state_dict = torch.load("../models/void_demo.pth")
model.load_state_dict(state_dict)
print(f"Model loaded! \n {model}")
# /predict input
# class Data(BaseModel):
# wav:
app = FastAPI()
@app.get("/")
async def root():
return { "message": "Hello World" }
@app.get("/urlpredict")
def url_predict(url: str):
filename = wget.download(url)
wav = process_from_filename(filename)
print(f"\ntest {wav.shape}\n")
model_prediction = model_predict(wav)
return model_prediction["predicition_index"]
@app.put("/predict")
def predict(wav):
print(f"wav {wav}")
# return wav
wav = process_raw_wav(wav)
model_prediction = model_predict(wav)
return {
"message": "Voiced Identified!",
"data": model_prediction,
}
def model_predict(wav):
model_input = wav.unsqueeze(0)
output = model(model_input)
prediction = torch.argmax(output, 1).item()
return {
"output": output,
"prediction_index": prediction,
} |