Spaces:
Runtime error
Runtime error
Removed gitignored directories
Browse files
__pycache__/cnn.cpython-39.pyc
DELETED
Binary file (1.36 kB)
|
|
__pycache__/dataset.cpython-39.pyc
DELETED
Binary file (3.06 kB)
|
|
notebooks/.ipynb_checkpoints/playground-checkpoint.ipynb
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [],
|
3 |
-
"metadata": {},
|
4 |
-
"nbformat": 4,
|
5 |
-
"nbformat_minor": 5
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/playground.ipynb
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 8,
|
6 |
-
"id": "
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
@@ -14,7 +14,7 @@
|
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
"execution_count": 10,
|
17 |
-
"id": "
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
@@ -25,7 +25,7 @@
|
|
25 |
{
|
26 |
"cell_type": "code",
|
27 |
"execution_count": 86,
|
28 |
-
"id": "
|
29 |
"metadata": {},
|
30 |
"outputs": [],
|
31 |
"source": [
|
@@ -38,7 +38,7 @@
|
|
38 |
{
|
39 |
"cell_type": "code",
|
40 |
"execution_count": 85,
|
41 |
-
"id": "
|
42 |
"metadata": {},
|
43 |
"outputs": [],
|
44 |
"source": [
|
@@ -49,7 +49,7 @@
|
|
49 |
{
|
50 |
"cell_type": "code",
|
51 |
"execution_count": 78,
|
52 |
-
"id": "
|
53 |
"metadata": {},
|
54 |
"outputs": [
|
55 |
{
|
@@ -70,8 +70,8 @@
|
|
70 |
},
|
71 |
{
|
72 |
"cell_type": "code",
|
73 |
-
"execution_count":
|
74 |
-
"id": "
|
75 |
"metadata": {},
|
76 |
"outputs": [],
|
77 |
"source": [
|
@@ -86,17 +86,17 @@
|
|
86 |
},
|
87 |
{
|
88 |
"cell_type": "code",
|
89 |
-
"execution_count":
|
90 |
-
"id": "
|
91 |
"metadata": {},
|
92 |
"outputs": [
|
93 |
{
|
94 |
"data": {
|
95 |
"text/plain": [
|
96 |
-
"
|
97 |
]
|
98 |
},
|
99 |
-
"execution_count":
|
100 |
"metadata": {},
|
101 |
"output_type": "execute_result"
|
102 |
}
|
@@ -107,8 +107,8 @@
|
|
107 |
},
|
108 |
{
|
109 |
"cell_type": "code",
|
110 |
-
"execution_count":
|
111 |
-
"id": "
|
112 |
"metadata": {},
|
113 |
"outputs": [
|
114 |
{
|
@@ -121,10 +121,10 @@
|
|
121 |
" [0.5154, 0.3950, 0.4497, ..., 0.4916, 0.4505, 0.7709],\n",
|
122 |
" [0.1919, 0.4804, 0.5144, ..., 0.5931, 0.4466, 0.4706],\n",
|
123 |
" [0.1208, 0.4357, 0.4016, ..., 0.5168, 0.7007, 0.3696]]]),\n",
|
124 |
-
"
|
125 |
]
|
126 |
},
|
127 |
-
"execution_count":
|
128 |
"metadata": {},
|
129 |
"output_type": "execute_result"
|
130 |
}
|
@@ -135,8 +135,8 @@
|
|
135 |
},
|
136 |
{
|
137 |
"cell_type": "code",
|
138 |
-
"execution_count":
|
139 |
-
"id": "
|
140 |
"metadata": {},
|
141 |
"outputs": [
|
142 |
{
|
@@ -145,7 +145,7 @@
|
|
145 |
"torch.Size([1, 64, 157])"
|
146 |
]
|
147 |
},
|
148 |
-
"execution_count":
|
149 |
"metadata": {},
|
150 |
"output_type": "execute_result"
|
151 |
}
|
@@ -156,42 +156,24 @@
|
|
156 |
},
|
157 |
{
|
158 |
"cell_type": "code",
|
159 |
-
"execution_count":
|
160 |
-
"id": "
|
161 |
"metadata": {},
|
162 |
"outputs": [
|
163 |
{
|
164 |
-
"
|
165 |
-
"
|
166 |
-
"
|
167 |
-
|
168 |
-
"
|
169 |
-
"
|
170 |
-
"
|
171 |
-
"
|
172 |
-
"
|
173 |
-
"
|
174 |
-
"
|
175 |
-
"
|
176 |
-
"
|
177 |
-
" ReLU-8 [-1, 64, 19, 14] 0\n",
|
178 |
-
" MaxPool2d-9 [-1, 64, 9, 7] 0\n",
|
179 |
-
" Conv2d-10 [-1, 128, 11, 9] 73,856\n",
|
180 |
-
" ReLU-11 [-1, 128, 11, 9] 0\n",
|
181 |
-
" MaxPool2d-12 [-1, 128, 5, 4] 0\n",
|
182 |
-
" Flatten-13 [-1, 2560] 0\n",
|
183 |
-
" Linear-14 [-1, 10] 25,610\n",
|
184 |
-
" Softmax-15 [-1, 10] 0\n",
|
185 |
-
"================================================================\n",
|
186 |
-
"Total params: 122,762\n",
|
187 |
-
"Trainable params: 122,762\n",
|
188 |
-
"Non-trainable params: 0\n",
|
189 |
-
"----------------------------------------------------------------\n",
|
190 |
-
"Input size (MB): 0.01\n",
|
191 |
-
"Forward/backward pass size (MB): 1.83\n",
|
192 |
-
"Params size (MB): 0.47\n",
|
193 |
-
"Estimated Total Size (MB): 2.31\n",
|
194 |
-
"----------------------------------------------------------------\n"
|
195 |
]
|
196 |
}
|
197 |
],
|
@@ -202,8 +184,8 @@
|
|
202 |
},
|
203 |
{
|
204 |
"cell_type": "code",
|
205 |
-
"execution_count":
|
206 |
-
"id": "
|
207 |
"metadata": {},
|
208 |
"outputs": [
|
209 |
{
|
@@ -212,7 +194,7 @@
|
|
212 |
"tensor(0)"
|
213 |
]
|
214 |
},
|
215 |
-
"execution_count":
|
216 |
"metadata": {},
|
217 |
"output_type": "execute_result"
|
218 |
}
|
@@ -223,8 +205,8 @@
|
|
223 |
},
|
224 |
{
|
225 |
"cell_type": "code",
|
226 |
-
"execution_count":
|
227 |
-
"id": "
|
228 |
"metadata": {},
|
229 |
"outputs": [
|
230 |
{
|
@@ -233,7 +215,7 @@
|
|
233 |
"{'aman': 0, 'imran': 1, 'labib': 2}"
|
234 |
]
|
235 |
},
|
236 |
-
"execution_count":
|
237 |
"metadata": {},
|
238 |
"output_type": "execute_result"
|
239 |
}
|
@@ -244,23 +226,26 @@
|
|
244 |
},
|
245 |
{
|
246 |
"cell_type": "code",
|
247 |
-
"execution_count":
|
248 |
-
"id": "
|
249 |
"metadata": {},
|
250 |
"outputs": [
|
251 |
{
|
252 |
-
"
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
264 |
}
|
265 |
],
|
266 |
"source": [
|
@@ -269,35 +254,43 @@
|
|
269 |
},
|
270 |
{
|
271 |
"cell_type": "code",
|
272 |
-
"execution_count":
|
273 |
-
"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
"metadata": {},
|
275 |
"outputs": [
|
276 |
{
|
277 |
"data": {
|
278 |
"text/plain": [
|
279 |
-
"'
|
280 |
]
|
281 |
},
|
282 |
-
"execution_count":
|
283 |
"metadata": {},
|
284 |
"output_type": "execute_result"
|
285 |
}
|
286 |
],
|
287 |
"source": [
|
288 |
-
"
|
289 |
-
"now = datetime.now()"
|
290 |
]
|
291 |
},
|
292 |
{
|
293 |
"cell_type": "code",
|
294 |
"execution_count": null,
|
295 |
-
"id": "
|
296 |
"metadata": {},
|
297 |
"outputs": [],
|
298 |
-
"source": [
|
299 |
-
"now.strftime(\"%Y%m%d-%H%M%S\")"
|
300 |
-
]
|
301 |
}
|
302 |
],
|
303 |
"metadata": {
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 8,
|
6 |
+
"id": "aa1911f5",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
|
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
"execution_count": 10,
|
17 |
+
"id": "67260d6a",
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
|
|
25 |
{
|
26 |
"cell_type": "code",
|
27 |
"execution_count": 86,
|
28 |
+
"id": "45a193b9",
|
29 |
"metadata": {},
|
30 |
"outputs": [],
|
31 |
"source": [
|
|
|
38 |
{
|
39 |
"cell_type": "code",
|
40 |
"execution_count": 85,
|
41 |
+
"id": "4e2c5825",
|
42 |
"metadata": {},
|
43 |
"outputs": [],
|
44 |
"source": [
|
|
|
49 |
{
|
50 |
"cell_type": "code",
|
51 |
"execution_count": 78,
|
52 |
+
"id": "1b14521b",
|
53 |
"metadata": {},
|
54 |
"outputs": [
|
55 |
{
|
|
|
70 |
},
|
71 |
{
|
72 |
"cell_type": "code",
|
73 |
+
"execution_count": 109,
|
74 |
+
"id": "d0d6fcd7",
|
75 |
"metadata": {},
|
76 |
"outputs": [],
|
77 |
"source": [
|
|
|
86 |
},
|
87 |
{
|
88 |
"cell_type": "code",
|
89 |
+
"execution_count": 110,
|
90 |
+
"id": "e39172ab",
|
91 |
"metadata": {},
|
92 |
"outputs": [
|
93 |
{
|
94 |
"data": {
|
95 |
"text/plain": [
|
96 |
+
"5717"
|
97 |
]
|
98 |
},
|
99 |
+
"execution_count": 110,
|
100 |
"metadata": {},
|
101 |
"output_type": "execute_result"
|
102 |
}
|
|
|
107 |
},
|
108 |
{
|
109 |
"cell_type": "code",
|
110 |
+
"execution_count": 111,
|
111 |
+
"id": "ef5746b3",
|
112 |
"metadata": {},
|
113 |
"outputs": [
|
114 |
{
|
|
|
121 |
" [0.5154, 0.3950, 0.4497, ..., 0.4916, 0.4505, 0.7709],\n",
|
122 |
" [0.1919, 0.4804, 0.5144, ..., 0.5931, 0.4466, 0.4706],\n",
|
123 |
" [0.1208, 0.4357, 0.4016, ..., 0.5168, 0.7007, 0.3696]]]),\n",
|
124 |
+
" 0)"
|
125 |
]
|
126 |
},
|
127 |
+
"execution_count": 111,
|
128 |
"metadata": {},
|
129 |
"output_type": "execute_result"
|
130 |
}
|
|
|
135 |
},
|
136 |
{
|
137 |
"cell_type": "code",
|
138 |
+
"execution_count": 112,
|
139 |
+
"id": "a4f08bd4",
|
140 |
"metadata": {},
|
141 |
"outputs": [
|
142 |
{
|
|
|
145 |
"torch.Size([1, 64, 157])"
|
146 |
]
|
147 |
},
|
148 |
+
"execution_count": 112,
|
149 |
"metadata": {},
|
150 |
"output_type": "execute_result"
|
151 |
}
|
|
|
156 |
},
|
157 |
{
|
158 |
"cell_type": "code",
|
159 |
+
"execution_count": 113,
|
160 |
+
"id": "2b58063c",
|
161 |
"metadata": {},
|
162 |
"outputs": [
|
163 |
{
|
164 |
+
"ename": "RuntimeError",
|
165 |
+
"evalue": "mat1 and mat2 shapes cannot be multiplied (2x2560 and 7040x10)",
|
166 |
+
"output_type": "error",
|
167 |
+
"traceback": [
|
168 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
169 |
+
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
|
170 |
+
"Cell \u001b[0;32mIn[113], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m cnn \u001b[38;5;241m=\u001b[39m CNNetwork()\n\u001b[0;32m----> 2\u001b[0m \u001b[43msummary\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcnn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m64\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m44\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
|
171 |
+
"File \u001b[0;32m~/anaconda3/envs/void/lib/python3.9/site-packages/torchsummary/torchsummary.py:72\u001b[0m, in \u001b[0;36msummary\u001b[0;34m(model, input_size, batch_size, device)\u001b[0m\n\u001b[1;32m 68\u001b[0m model\u001b[38;5;241m.\u001b[39mapply(register_hook)\n\u001b[1;32m 70\u001b[0m \u001b[38;5;66;03m# make a forward pass\u001b[39;00m\n\u001b[1;32m 71\u001b[0m \u001b[38;5;66;03m# print(x.shape)\u001b[39;00m\n\u001b[0;32m---> 72\u001b[0m \u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 74\u001b[0m \u001b[38;5;66;03m# remove these hooks\u001b[39;00m\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m h \u001b[38;5;129;01min\u001b[39;00m hooks:\n",
|
172 |
+
"File \u001b[0;32m~/anaconda3/envs/void/lib/python3.9/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
|
173 |
+
"File \u001b[0;32m~/ml-sandbox/VoID/notebooks/../cnn.py:64\u001b[0m, in \u001b[0;36mCNNetwork.forward\u001b[0;34m(self, input_data)\u001b[0m\n\u001b[1;32m 62\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconv4(x)\n\u001b[1;32m 63\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflatten(x)\n\u001b[0;32m---> 64\u001b[0m logits \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinear\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 65\u001b[0m predictions \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msoftmax(logits)\n\u001b[1;32m 66\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m predictions\n",
|
174 |
+
"File \u001b[0;32m~/anaconda3/envs/void/lib/python3.9/site-packages/torch/nn/modules/module.py:1538\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1535\u001b[0m bw_hook \u001b[38;5;241m=\u001b[39m hooks\u001b[38;5;241m.\u001b[39mBackwardHook(\u001b[38;5;28mself\u001b[39m, full_backward_hooks, backward_pre_hooks)\n\u001b[1;32m 1536\u001b[0m args \u001b[38;5;241m=\u001b[39m bw_hook\u001b[38;5;241m.\u001b[39msetup_input_hook(args)\n\u001b[0;32m-> 1538\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1539\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks:\n\u001b[1;32m 1540\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m hook_id, hook \u001b[38;5;129;01min\u001b[39;00m (\n\u001b[1;32m 1541\u001b[0m \u001b[38;5;241m*\u001b[39m_global_forward_hooks\u001b[38;5;241m.\u001b[39mitems(),\n\u001b[1;32m 1542\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks\u001b[38;5;241m.\u001b[39mitems(),\n\u001b[1;32m 1543\u001b[0m ):\n",
|
175 |
+
"File \u001b[0;32m~/anaconda3/envs/void/lib/python3.9/site-packages/torch/nn/modules/linear.py:114\u001b[0m, in \u001b[0;36mLinear.forward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m: Tensor) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Tensor:\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mF\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinear\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbias\u001b[49m\u001b[43m)\u001b[49m\n",
|
176 |
+
"\u001b[0;31mRuntimeError\u001b[0m: mat1 and mat2 shapes cannot be multiplied (2x2560 and 7040x10)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
]
|
178 |
}
|
179 |
],
|
|
|
184 |
},
|
185 |
{
|
186 |
"cell_type": "code",
|
187 |
+
"execution_count": 114,
|
188 |
+
"id": "70264920",
|
189 |
"metadata": {},
|
190 |
"outputs": [
|
191 |
{
|
|
|
194 |
"tensor(0)"
|
195 |
]
|
196 |
},
|
197 |
+
"execution_count": 114,
|
198 |
"metadata": {},
|
199 |
"output_type": "execute_result"
|
200 |
}
|
|
|
205 |
},
|
206 |
{
|
207 |
"cell_type": "code",
|
208 |
+
"execution_count": 115,
|
209 |
+
"id": "9383e1bb",
|
210 |
"metadata": {},
|
211 |
"outputs": [
|
212 |
{
|
|
|
215 |
"{'aman': 0, 'imran': 1, 'labib': 2}"
|
216 |
]
|
217 |
},
|
218 |
+
"execution_count": 115,
|
219 |
"metadata": {},
|
220 |
"output_type": "execute_result"
|
221 |
}
|
|
|
226 |
},
|
227 |
{
|
228 |
"cell_type": "code",
|
229 |
+
"execution_count": 116,
|
230 |
+
"id": "6d0cb06a",
|
231 |
"metadata": {},
|
232 |
"outputs": [
|
233 |
{
|
234 |
+
"data": {
|
235 |
+
"text/plain": [
|
236 |
+
"(tensor([[[0.2647, 0.0247, 0.0324, ..., 0.0230, 0.1026, 0.5454],\n",
|
237 |
+
" [0.0812, 0.0178, 0.0890, ..., 0.2376, 0.5061, 0.5292],\n",
|
238 |
+
" [0.0052, 0.0212, 0.1341, ..., 0.9336, 0.2778, 0.1372],\n",
|
239 |
+
" ...,\n",
|
240 |
+
" [0.5154, 0.3950, 0.4497, ..., 0.4916, 0.4505, 0.7709],\n",
|
241 |
+
" [0.1919, 0.4804, 0.5144, ..., 0.5931, 0.4466, 0.4706],\n",
|
242 |
+
" [0.1208, 0.4357, 0.4016, ..., 0.5168, 0.7007, 0.3696]]]),\n",
|
243 |
+
" 0)"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
"execution_count": 116,
|
247 |
+
"metadata": {},
|
248 |
+
"output_type": "execute_result"
|
249 |
}
|
250 |
],
|
251 |
"source": [
|
|
|
254 |
},
|
255 |
{
|
256 |
"cell_type": "code",
|
257 |
+
"execution_count": 117,
|
258 |
+
"id": "e07e35f7",
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [],
|
261 |
+
"source": [
|
262 |
+
"from datetime import datetime\n",
|
263 |
+
"now = datetime.now()"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": 107,
|
269 |
+
"id": "ef2eddad",
|
270 |
"metadata": {},
|
271 |
"outputs": [
|
272 |
{
|
273 |
"data": {
|
274 |
"text/plain": [
|
275 |
+
"'20230512_222912'"
|
276 |
]
|
277 |
},
|
278 |
+
"execution_count": 107,
|
279 |
"metadata": {},
|
280 |
"output_type": "execute_result"
|
281 |
}
|
282 |
],
|
283 |
"source": [
|
284 |
+
"now.strftime(\"%Y%m%d_%H%M%S\")"
|
|
|
285 |
]
|
286 |
},
|
287 |
{
|
288 |
"cell_type": "code",
|
289 |
"execution_count": null,
|
290 |
+
"id": "c665d0cf",
|
291 |
"metadata": {},
|
292 |
"outputs": [],
|
293 |
+
"source": []
|
|
|
|
|
294 |
}
|
295 |
],
|
296 |
"metadata": {
|