Spaces:
Runtime error
Runtime error
Add wandb
Browse files- .gitignore +2 -1
- models/aisf/void_20230520_110446.pth +0 -0
- train.py +7 -2
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
data/*
|
2 |
__pycache__/*
|
3 |
*/__pycache__/*
|
4 |
-
*/.ipynb_checkpoints/*
|
|
|
|
1 |
data/*
|
2 |
__pycache__/*
|
3 |
*/__pycache__/*
|
4 |
+
*/.ipynb_checkpoints/*
|
5 |
+
wandb
|
models/aisf/void_20230520_110446.pth
ADDED
Binary file (655 kB). View file
|
|
train.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from datetime import datetime
|
2 |
from tqdm import tqdm
|
|
|
3 |
|
4 |
# torch
|
5 |
import torch
|
@@ -37,6 +38,7 @@ def train(model, train_dataloader, loss_fn, optimizer, device, epochs, test_data
|
|
37 |
training_acc.append(train_epoch_acc/len(train_dataloader))
|
38 |
|
39 |
print("Training Loss: {:.2f}, Training Accuracy {}".format(training_loss[i], training_acc[i]))
|
|
|
40 |
|
41 |
if test_dataloader:
|
42 |
# test model
|
@@ -47,6 +49,7 @@ def train(model, train_dataloader, loss_fn, optimizer, device, epochs, test_data
|
|
47 |
testing_acc.append(test_epoch_acc/len(test_dataloader))
|
48 |
|
49 |
print("Testing Loss: {:.2f}, Testing Accuracy {}".format(testing_loss[i], testing_acc[i]))
|
|
|
50 |
|
51 |
print ("-------------------------------------------- \n")
|
52 |
|
@@ -117,7 +120,7 @@ if __name__ == "__main__":
|
|
117 |
n_mels=128
|
118 |
)
|
119 |
|
120 |
-
train_dataset = VoiceDataset(AISF_TRAIN_FILE, mel_spectrogram, device)
|
121 |
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
122 |
|
123 |
# construct model
|
@@ -130,6 +133,7 @@ if __name__ == "__main__":
|
|
130 |
# optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
131 |
optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=0.9)
|
132 |
|
|
|
133 |
|
134 |
# train model
|
135 |
train(model, train_dataloader, loss_fn, optimizer, device, EPOCHS)
|
@@ -141,4 +145,5 @@ if __name__ == "__main__":
|
|
141 |
now = now.strftime("%Y%m%d_%H%M%S")
|
142 |
model_filename = f"models/aisf/void_{now}.pth"
|
143 |
torch.save(model.state_dict(), model_filename)
|
144 |
-
print(f"Trained void model saved at {model_filename}")
|
|
|
|
1 |
from datetime import datetime
|
2 |
from tqdm import tqdm
|
3 |
+
import wandb
|
4 |
|
5 |
# torch
|
6 |
import torch
|
|
|
38 |
training_acc.append(train_epoch_acc/len(train_dataloader))
|
39 |
|
40 |
print("Training Loss: {:.2f}, Training Accuracy {}".format(training_loss[i], training_acc[i]))
|
41 |
+
wandb.log({'training_loss': training_loss[i], 'training_acc': training_acc[i]})
|
42 |
|
43 |
if test_dataloader:
|
44 |
# test model
|
|
|
49 |
testing_acc.append(test_epoch_acc/len(test_dataloader))
|
50 |
|
51 |
print("Testing Loss: {:.2f}, Testing Accuracy {}".format(testing_loss[i], testing_acc[i]))
|
52 |
+
wandb.log({'testing_loss': testing_loss[i], 'training_acc': training_acc[i]})
|
53 |
|
54 |
print ("-------------------------------------------- \n")
|
55 |
|
|
|
120 |
n_mels=128
|
121 |
)
|
122 |
|
123 |
+
train_dataset = VoiceDataset(AISF_TRAIN_FILE, mel_spectrogram, device, time_limit_in_secs=3)
|
124 |
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
125 |
|
126 |
# construct model
|
|
|
133 |
# optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
134 |
optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=0.9)
|
135 |
|
136 |
+
wandb.init(project="void-train")
|
137 |
|
138 |
# train model
|
139 |
train(model, train_dataloader, loss_fn, optimizer, device, EPOCHS)
|
|
|
145 |
now = now.strftime("%Y%m%d_%H%M%S")
|
146 |
model_filename = f"models/aisf/void_{now}.pth"
|
147 |
torch.save(model.state_dict(), model_filename)
|
148 |
+
print(f"Trained void model saved at {model_filename}")
|
149 |
+
wandb.finish()
|