import os import torch from torch.utils.data import Dataset import pandas as pd import torchaudio class VoiceDataset(Dataset): def __init__( self, data_directory, transformation, device, target_sample_rate=48000, time_limit_in_secs=5, ): # file processing self._data_path = os.path.join(data_directory) self._labels = os.listdir(self._data_path) self.label_mapping = {label: i for i, label in enumerate(self._labels)} self.audio_files_labels = self._join_audio_files() self.device = device # audio processing self.transformation = transformation self.target_sample_rate = target_sample_rate self.num_samples = time_limit_in_secs * self.target_sample_rate def __len__(self): return len(self.audio_files_labels) def __getitem__(self, index): # get file file, label = self.audio_files_labels[index] filepath = os.path.join(self._data_path, label, file) # load wav wav, sr = torchaudio.load(filepath, normalize=True) # modify wav file, if necessary wav = wav.to(self.device) wav = self._resample(wav, sr) wav = self._mix_down(wav) wav = self._cut_or_pad(wav) # apply transformation wav = self.transformation(wav) # return wav and integer representation of the label return wav, self.label_mapping[label] def _join_audio_files(self): """Join all the audio file names and labels into one single dimenional array""" audio_files_labels = [] for label in self._labels: label_path = os.path.join(self._data_path, label) for f in os.listdir(label_path): audio_files_labels.append((f, label)) return audio_files_labels def _resample(self, wav, current_sample_rate): """Resample audio to the target sample rate, if necessary""" if current_sample_rate != self.target_sample_rate: resampler = torchaudio.transforms.Resample(current_sample_rate, self.target_sample_rate) wav = resampler(wav) return wav def _mix_down(self, wav): """Mix down audio to a single channel, if necessary""" if wav.shape[0] > 1: wav = torch.mean(wav, dim=0, keepdim=True) return wav def _cut_or_pad(self, wav): """Modify audio if number of samples != target number of samples of the dataset. If there are too many samples, cut the audio. If there are not enough samples, pad the audio with zeros. """ length_signal = wav.shape[1] if length_signal > self.num_samples: wav = wav[:, :self.num_samples] elif length_signal < self.num_samples: num_of_missing_samples = self.num_samples - length_signal pad = (0, num_of_missing_samples) wav = torch.nn.functional.pad(wav, pad) return wav