Upload streamlit_app.py
Browse files- streamlit_app.py +123 -0
streamlit_app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from io import BytesIO
|
3 |
+
# import gradio as gr
|
4 |
+
# Def_04 Docx file to translated_Docx file
|
5 |
+
#from transformers import MarianMTModel, MarianTokenizer
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
import nltk
|
8 |
+
from nltk.tokenize import sent_tokenize
|
9 |
+
from nltk.tokenize import LineTokenizer
|
10 |
+
nltk.download('punkt')
|
11 |
+
import math
|
12 |
+
import torch
|
13 |
+
from docx import Document
|
14 |
+
from time import sleep
|
15 |
+
from stqdm import stqdm
|
16 |
+
|
17 |
+
import docx
|
18 |
+
def getText(filename):
|
19 |
+
doc = docx.Document(filename)
|
20 |
+
fullText = []
|
21 |
+
for para in doc.paragraphs:
|
22 |
+
fullText.append(para.text)
|
23 |
+
return '\n'.join(fullText)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# mname = 'Helsinki-NLP/opus-mt-en-hi'
|
29 |
+
# tokenizer = MarianTokenizer.from_pretrained(mname)
|
30 |
+
# model = MarianMTModel.from_pretrained(mname)
|
31 |
+
# model.to(device)
|
32 |
+
|
33 |
+
#@st.cache
|
34 |
+
def btTranslator(docxfile):
|
35 |
+
if torch.cuda.is_available():
|
36 |
+
dev = "cuda"
|
37 |
+
else:
|
38 |
+
dev = "cpu"
|
39 |
+
device = torch.device(dev)
|
40 |
+
a=getText(docxfile)
|
41 |
+
a1=a.split('\n')
|
42 |
+
bigtext=''' '''
|
43 |
+
for a in a1:
|
44 |
+
bigtext=bigtext+'\n'+a
|
45 |
+
|
46 |
+
files=Document()
|
47 |
+
|
48 |
+
a="Helsinki-NLP/opus-mt-en-ru"
|
49 |
+
b="Helsinki-NLP/opus-mt-ru-fr"
|
50 |
+
c="Helsinki-NLP/opus-mt-fr-en"
|
51 |
+
# d="Helsinki-NLP/opus-mt-es-en"
|
52 |
+
langs=[a,b,c]
|
53 |
+
text=bigtext
|
54 |
+
|
55 |
+
for _,lang in zip(stqdm(langs),langs):
|
56 |
+
st.spinner('Wait for it...')
|
57 |
+
sleep(0.5)
|
58 |
+
# mname = '/content/drive/MyDrive/Transformers Models/opus-mt-en-hi-Trans Model'
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(lang)
|
60 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(lang)
|
61 |
+
model.to(device)
|
62 |
+
lt = LineTokenizer()
|
63 |
+
batch_size = 64
|
64 |
+
paragraphs = lt.tokenize(bigtext)
|
65 |
+
translated_paragraphs = []
|
66 |
+
|
67 |
+
for _, paragraph in zip(stqdm(paragraphs),paragraphs):
|
68 |
+
st.spinner('Wait for it...')
|
69 |
+
# ######################################
|
70 |
+
sleep(0.5)
|
71 |
+
|
72 |
+
# ######################################
|
73 |
+
sentences = sent_tokenize(paragraph)
|
74 |
+
batches = math.ceil(len(sentences) / batch_size)
|
75 |
+
translated = []
|
76 |
+
for i in range(batches):
|
77 |
+
sent_batch = sentences[i*batch_size:(i+1)*batch_size]
|
78 |
+
model_inputs = tokenizer(sent_batch, return_tensors="pt", padding=True, truncation=True, max_length=500).to(device)
|
79 |
+
with torch.no_grad():
|
80 |
+
translated_batch = model.generate(**model_inputs)
|
81 |
+
translated += translated_batch
|
82 |
+
translated = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
|
83 |
+
translated_paragraphs += [" ".join(translated)]
|
84 |
+
#files.add_paragraph(translated)
|
85 |
+
translated_text = "\n".join(translated_paragraphs)
|
86 |
+
bigtext=translated_text
|
87 |
+
files.add_paragraph(bigtext)
|
88 |
+
#files2save=files.save("Translated.docx")
|
89 |
+
#files.save("Translated.docx")
|
90 |
+
#binary_output = BytesIO()
|
91 |
+
#f=files.save(binary_output)
|
92 |
+
#f2=f.getvalue()
|
93 |
+
return files
|
94 |
+
|
95 |
+
|
96 |
+
#return translated_text
|
97 |
+
st.title('Translator App')
|
98 |
+
st.markdown("Translate from Docx file")
|
99 |
+
st.subheader("File Upload")
|
100 |
+
|
101 |
+
datas=st.file_uploader("Original File")
|
102 |
+
name=st.text_input('Enter New File Name: ')
|
103 |
+
#data=getText("C:\Users\Ambresh C\Desktop\Python Files\Translators\Trail Doc of 500 words.docx")
|
104 |
+
#if datas :
|
105 |
+
#if st.button(label='Data Process'):
|
106 |
+
binary_output = BytesIO()
|
107 |
+
if st.button(label='Translate'):
|
108 |
+
st.spinner('Waiting...')
|
109 |
+
btTranslator(datas).save(binary_output)
|
110 |
+
binary_output.getbuffer()
|
111 |
+
st.success("Translated")
|
112 |
+
|
113 |
+
st.download_button(label='Download Translated File',file_name=(f"{name}_Translated.docx"), data=binary_output.getvalue())
|
114 |
+
#files.save(f"{name}_Translated.docx")
|
115 |
+
#else:
|
116 |
+
# st.text('Upload File and Start the process')
|
117 |
+
|
118 |
+
|
119 |
+
#f4=binary_output(f3)
|
120 |
+
|
121 |
+
#st.sidebar.download_button(label='Download Translated File',file_name='Translated.docx', data=binary_output.getvalue())
|
122 |
+
# st.text_area(label="",value=btTranslator(datas),height=100)
|
123 |
+
# Footer
|