Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# Def_04 Docx file to translated_Docx file
|
3 |
+
from transformers import MarianMTModel, MarianTokenizer
|
4 |
+
import nltk
|
5 |
+
from nltk.tokenize import sent_tokenize
|
6 |
+
from nltk.tokenize import LineTokenizer
|
7 |
+
nltk.download('punkt')
|
8 |
+
import math
|
9 |
+
import torch
|
10 |
+
from docx import Document
|
11 |
+
from time import sleep
|
12 |
+
|
13 |
+
import docx
|
14 |
+
def getText(filename):
|
15 |
+
doc = docx.Document(filename)
|
16 |
+
fullText = []
|
17 |
+
for para in doc.paragraphs:
|
18 |
+
fullText.append(para.text)
|
19 |
+
return '\n'.join(fullText)
|
20 |
+
|
21 |
+
# Def_01 applying process bar to function
|
22 |
+
import sys
|
23 |
+
|
24 |
+
def print_progress_bar(index, total, label):
|
25 |
+
n_bar = 50 # Progress bar width
|
26 |
+
progress = index / total
|
27 |
+
sys.stdout.write('\r')
|
28 |
+
sys.stdout.write(f"[{'=' * int(n_bar * progress):{n_bar}s}] {int(100 * progress)}% {label}")
|
29 |
+
sys.stdout.flush()
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
if torch.cuda.is_available():
|
35 |
+
dev = "cuda"
|
36 |
+
else:
|
37 |
+
dev = "cpu"
|
38 |
+
device = torch.device(dev)
|
39 |
+
|
40 |
+
mname = '/content/drive/MyDrive/Transformers Models/opus-mt-en-hi-Trans Model'
|
41 |
+
tokenizer = MarianTokenizer.from_pretrained(mname)
|
42 |
+
model = MarianMTModel.from_pretrained(mname)
|
43 |
+
model.to(device)
|
44 |
+
|
45 |
+
|
46 |
+
def btTranslator(docxfile):
|
47 |
+
a=getText(docxfile)
|
48 |
+
a1=a.split('\n')
|
49 |
+
bigtext=''' '''
|
50 |
+
for a in a1:
|
51 |
+
bigtext=bigtext+'\n'+a
|
52 |
+
files=Document()
|
53 |
+
lt = LineTokenizer()
|
54 |
+
batch_size = 8
|
55 |
+
paragraphs = lt.tokenize(bigtext)
|
56 |
+
translated_paragraphs = []
|
57 |
+
|
58 |
+
|
59 |
+
for index, paragraph in enumerate(paragraphs):
|
60 |
+
# ######################################
|
61 |
+
total=len(paragraphs)
|
62 |
+
print_progress_bar(index, total, "Percentage Bar")
|
63 |
+
sleep(0.5)
|
64 |
+
|
65 |
+
# ######################################
|
66 |
+
sentences = sent_tokenize(paragraph)
|
67 |
+
batches = math.ceil(len(sentences) / batch_size)
|
68 |
+
translated = []
|
69 |
+
for i in range(batches):
|
70 |
+
sent_batch = sentences[i*batch_size:(i+1)*batch_size]
|
71 |
+
model_inputs = tokenizer(sent_batch, return_tensors="pt", padding=True, truncation=True, max_length=500).to(device)
|
72 |
+
with torch.no_grad():
|
73 |
+
translated_batch = model.generate(**model_inputs)
|
74 |
+
translated += translated_batch
|
75 |
+
translated = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
|
76 |
+
translated_paragraphs += [" ".join(translated)]
|
77 |
+
files.add_paragraph(translated)
|
78 |
+
# translated_text = "\n".join(translated_paragraphs)
|
79 |
+
|
80 |
+
f=files.save(f"Translated_{docxfile[23:]}")
|
81 |
+
return translated_paragraphs,f
|
82 |
+
|
83 |
+
|
84 |
+
import gradio as gr
|
85 |
+
interface = gr.Interface(fn=btTranslator,
|
86 |
+
inputs=gr.inputs.Textbox(lines=1),
|
87 |
+
# inputs = gr.inputs.File(file_count="multiple",label="Input Files"),
|
88 |
+
# inputs=
|
89 |
+
outputs=['text','file'],
|
90 |
+
show_progress=True
|
91 |
+
)
|
92 |
+
|
93 |
+
interface.launch(debug=True)
|