Spaces:
Sleeping
Sleeping
#Initial installations | |
pip uninstall -y tensorflow | |
pip install tensorflow==2.14 | |
pip install --upgrade pip | |
pip install --upgrade transformers scipy | |
pip install transformers | |
pip install pymupdf | |
## Summarization | |
import gradio as gr | |
import fitz # PyMuPDF | |
from transformers import BartTokenizer, BartForConditionalGeneration, pipeline | |
import scipy.io.wavfile | |
import numpy as np | |
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') | |
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') | |
def extract_abstract(pdf_path): | |
doc = fitz.open(pdf_path) | |
first_page = doc[0].get_text() | |
start_idx = first_page.lower().find("abstract") | |
end_idx = first_page.lower().find("introduction") | |
if start_idx != -1 and end_idx != -1: | |
return first_page[start_idx:end_idx].strip() | |
else: | |
return "Abstract not found or '1 Introduction' not found in the first page." | |
# Specify the path to your PDF file | |
pdf_path = "/content/article11.pdf" # Update the path | |
# Extract the abstract | |
abstract_text = extract_abstract(pdf_path) | |
# Print the extracted abstract | |
print("Extracted Abstract:") | |
print(abstract_text) | |
from IPython.core.display import display, HTML | |
# Function to display summary and reduction percentage aesthetically | |
def display_results(final_summary, original_text): | |
reduction_percentage = 100 * (1 - len(final_summary) / len(original_text)) | |
html_content = f""" | |
<div style='padding: 20px; background-color: #f3f3f3; border-radius: 10px;'> | |
<h2 style='color: #2c3e50; text-align: center;'>Summary</h2> | |
<p style='color: #34495e; font-size: 16px; text-align: justify;'>{final_summary}</p> | |
<p style='color: #2c3e50;'><b>Reduction in Text:</b> {reduction_percentage:.2f}%</p> | |
</div> | |
""" | |
display(HTML(html_content)) | |
# Summary generation and post-processing | |
inputs = tokenizer([abstract_text], max_length=1024, return_tensors='pt', truncation=True) | |
max_length_for_summary = 40 | |
length_penalty_value = 2.0 | |
summary_ids = model.generate(inputs['input_ids'], | |
num_beams=4, | |
max_length=max_length_for_summary, | |
min_length=10, | |
length_penalty=length_penalty_value, | |
early_stopping=True, | |
no_repeat_ngram_size=2) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
summary = ' '.join(summary.split()) # Remove extra spaces | |
# Handle truncated words and adjust periods | |
words = summary.split() | |
cleaned_summary = [] | |
for i, word in enumerate(words): | |
if '-' in word and i < len(words) - 1: | |
word = word.replace('-', '') + words[i + 1] | |
words[i + 1] = "" | |
if '.' in word and i != len(words) - 1: | |
word = word.replace('.', '') | |
cleaned_summary.append(word + ' and') | |
else: | |
cleaned_summary.append(word) | |
# Capitalize first word and adjust following words | |
final_summary = ' '.join(cleaned_summary) | |
final_summary = final_summary[0].upper() + final_summary[1:] | |
final_summary = ' '.join(w[0].lower() + w[1:] if w.lower() != 'and' else w for w in final_summary.split()) | |
# Displaying the results | |
display_results(final_summary, abstract_text) | |
##Text-to-Speech | |
# Initialize the Bark TTS pipeline | |
synthesiser = pipeline("text-to-speech", "suno/bark") | |
# Initialize the Bark TTS pipeline | |
synthesiser = pipeline("text-to-speech", "suno/bark") | |
# Convert the summarized text to speech | |
speech = synthesiser(final_summary, forward_params={"do_sample": True}) | |
# Normalize the audio data | |
audio_data = speech["audio"].squeeze() | |
normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767) | |
# Save the normalized audio data as a WAV file | |
output_file = "/content/bark_output.wav" | |
scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data) | |
print(f"Audio file saved as {output_file}") | |
# Display an audio player widget to play the generated speech | |
Audio(output_file) | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=process_text, | |
inputs="text", | |
outputs=["text", "audio"], | |
title="Summarization and Text-to-Speech", | |
description="Enter text to summarize and convert to speech." | |
) | |
if __name__ == "__main__": | |
iface.launch() |