Spaces:
Running
Running
# https://huggingface.co/spaces/amendolajine/OPIT | |
# Here are the imports | |
import logging | |
import gradio as gr | |
import fitz # PyMuPDF | |
from transformers import BartTokenizer, BartForConditionalGeneration, pipeline | |
import scipy.io.wavfile | |
import numpy as np | |
# Here is the code | |
# Initialize logging | |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Initialize tokenizers and models | |
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') | |
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') | |
synthesiser = pipeline("text-to-speech", "suno/bark") | |
def extract_abstract(pdf_bytes): | |
try: | |
doc = fitz.open(stream=pdf_bytes, filetype="pdf") | |
first_page = doc[0].get_text() | |
start_idx = first_page.lower().find("abstract") | |
end_idx = first_page.lower().find("introduction") | |
if start_idx != -1 and end_idx != -1: | |
return first_page[start_idx:end_idx].strip() | |
else: | |
return "Abstract not found or 'Introduction' not found in the first page." | |
except Exception as e: | |
logging.error(f"Error extracting abstract: {e}") | |
return "Error in abstract extraction" | |
def process_text(uploaded_file): | |
logging.debug(f"Uploaded file type: {type(uploaded_file)}") | |
logging.debug(f"Uploaded file content: {uploaded_file}") | |
try: | |
with open(uploaded_file, "rb") as file: | |
pdf_bytes = file.read() | |
except Exception as e: | |
logging.error(f"Error reading file from path: {e}") | |
return "Error reading PDF file", None | |
try: | |
abstract_text = extract_abstract(pdf_bytes) | |
logging.info(f"Extracted abstract: {abstract_text[:200]}...") | |
except Exception as e: | |
logging.error(f"Error in abstract extraction: {e}") | |
return "Error in processing PDF", None | |
try: | |
inputs = tokenizer([abstract_text], max_length=1024, return_tensors='pt', truncation=True, padding="max_length") | |
summary_ids = model.generate( | |
input_ids=inputs['input_ids'], | |
attention_mask=inputs['attention_mask'], | |
pad_token_id=model.config.pad_token_id, | |
num_beams=4, | |
max_length=45, | |
min_length=10, | |
length_penalty=2.0, | |
early_stopping=True, | |
no_repeat_ngram_size=2 | |
) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
words = summary.split() | |
cleaned_summary = [] | |
for i, word in enumerate(words): | |
if '-' in word and i < len(words) - 1: | |
word = word.replace('-', '') + words[i + 1] | |
words[i + 1] = "" | |
if '.' in word and i != len(words) - 1: | |
word = word.replace('.', '') | |
cleaned_summary.append(word + ' and') | |
else: | |
cleaned_summary.append(word) | |
final_summary = ' '.join(cleaned_summary) | |
final_summary = final_summary[0].upper() + final_summary[1:] | |
final_summary = ' '.join(w[0].lower() + w[1:] if w.lower() != 'and' else w for w in final_summary.split()) | |
speech = synthesiser(final_summary, forward_params={"do_sample": True}) | |
audio_data = speech["audio"].squeeze() | |
normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767) | |
output_file = "temp_output.wav" | |
scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data) | |
return final_summary, output_file | |
except Exception as e: | |
logging.error(f"Error in summary generation or TTS conversion: {e}") | |
return "Error in summary or speech generation", None | |
iface = gr.Interface( | |
fn=process_text, | |
inputs=gr.components.File(label="Upload a research PDF containing an abstract"), | |
outputs=["text", "audio"], | |
title="Summarize an abstract and vocalize it", | |
description="Upload a research paper in PDF format to extract, summarize its abstract, and convert the summarization to speech. If the upload doesn't work on the first try, refresh the page (CTRL+F5) and try again." | |
) | |
if __name__ == "__main__": | |
iface.launch() |