# https://huggingface.co/spaces/amendolajine/OPIT # Here are the imports import logging import gradio as gr import fitz # PyMuPDF from transformers import BartTokenizer, BartForConditionalGeneration, pipeline import scipy.io.wavfile import numpy as np # Here is the code # Initialize logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') # Initialize tokenizers and models tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') synthesiser = pipeline("text-to-speech", "suno/bark") def extract_abstract(pdf_bytes): try: doc = fitz.open(stream=pdf_bytes, filetype="pdf") first_page = doc[0].get_text() start_idx = first_page.lower().find("abstract") end_idx = first_page.lower().find("introduction") if start_idx != -1 and end_idx != -1: return first_page[start_idx:end_idx].strip() else: return "Abstract not found or 'Introduction' not found in the first page." except Exception as e: logging.error(f"Error extracting abstract: {e}") return "Error in abstract extraction" def process_text(uploaded_file): logging.debug(f"Uploaded file type: {type(uploaded_file)}") logging.debug(f"Uploaded file content: {uploaded_file}") try: with open(uploaded_file, "rb") as file: pdf_bytes = file.read() except Exception as e: logging.error(f"Error reading file from path: {e}") return "Error reading PDF file", None try: abstract_text = extract_abstract(pdf_bytes) logging.info(f"Extracted abstract: {abstract_text[:200]}...") except Exception as e: logging.error(f"Error in abstract extraction: {e}") return "Error in processing PDF", None try: inputs = tokenizer([abstract_text], max_length=1024, return_tensors='pt', truncation=True, padding="max_length") summary_ids = model.generate( input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], pad_token_id=model.config.pad_token_id, num_beams=4, max_length=45, min_length=10, length_penalty=2.0, early_stopping=True, no_repeat_ngram_size=2 ) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) words = summary.split() cleaned_summary = [] for i, word in enumerate(words): if '-' in word and i < len(words) - 1: word = word.replace('-', '') + words[i + 1] words[i + 1] = "" if '.' in word and i != len(words) - 1: word = word.replace('.', '') cleaned_summary.append(word + ' and') else: cleaned_summary.append(word) final_summary = ' '.join(cleaned_summary) final_summary = final_summary[0].upper() + final_summary[1:] final_summary = ' '.join(w[0].lower() + w[1:] if w.lower() != 'and' else w for w in final_summary.split()) speech = synthesiser(final_summary, forward_params={"do_sample": True}) audio_data = speech["audio"].squeeze() normalized_audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767) output_file = "temp_output.wav" scipy.io.wavfile.write(output_file, rate=speech["sampling_rate"], data=normalized_audio_data) return final_summary, output_file except Exception as e: logging.error(f"Error in summary generation or TTS conversion: {e}") return "Error in summary or speech generation", None iface = gr.Interface( fn=process_text, inputs=gr.components.File(label="Upload a research PDF containing an abstract"), outputs=["text", "audio"], title="Summarize an abstract and vocalize it", description="Upload a research paper in PDF format to extract, summarize its abstract, and convert the summarization to speech. If the upload doesn't work on the first try, refresh the page (CTRL+F5) and try again." ) if __name__ == "__main__": iface.launch()