Spaces:
Running
Running
import streamlit as st | |
from datetime import date | |
import yfinance as yf | |
from prophet import Prophet | |
from prophet.plot import plot_plotly | |
from plotly import graph_objs as go | |
start_date = "2016-01-01" | |
today_date = date.today().strftime("%Y-%m-%d") | |
st.title("Stock Price Forcasting App") | |
stocks = ("GS","MS","JPM","C") | |
selected_stocks = st.selectbox("Select the stock for prediction",stocks) | |
n_years = st.slider("Years of Prediction",1, 4) | |
period = n_years * 365 | |
def load_data(ticker): | |
data = yf.download(ticker,start_date,today_date) | |
data.reset_index(inplace=True) | |
return data | |
data_load_state = st.text("Loading the data....") | |
data = load_data(selected_stocks) | |
data_load_state.text("Data is Loaded!!") | |
st.subheader("Raw Data") | |
st.write(data.tail()) | |
def plot_raw_data(): | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x = data['Date'],y=data['Open'], name = 'Open Price')) | |
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name = 'Close Price')) | |
fig.layout.update(title_text = "Time Series Data", xaxis_rangeslider_visible=True) | |
st.plotly_chart(fig) | |
plot_raw_data() | |
# forecasting | |
df_train = data[['Date','Close']] | |
df_train = df_train.rename(columns={"Date":"ds", "Close":"y"}) | |
model = Prophet() | |
model.fit(df_train) | |
future = model.make_future_dataframe(periods= period) | |
forecast = model.predict(future) | |
st.subheader('Forecast Data') | |
st.write(forecast.tail()) | |
st.write("Forecast Data") | |
fig_1 = plot_plotly(model, forecast) | |
st.plotly_chart(fig_1) | |
st.write("Forecast Components") | |
fig_2 = model.plot_components(forecast) | |
st.write(fig_2) | |