Delete app.py
Browse files
app.py
DELETED
@@ -1,64 +0,0 @@
|
|
1 |
-
from tensorflow import keras
|
2 |
-
|
3 |
-
keras.mixed_precision.set_global_policy("mixed_float16")
|
4 |
-
|
5 |
-
import time
|
6 |
-
|
7 |
-
import gradio as gr
|
8 |
-
import keras_cv
|
9 |
-
|
10 |
-
from constants import css, examples, img_height, img_width, num_images_to_gen
|
11 |
-
from share_btn import community_icon_html, loading_icon_html, share_js
|
12 |
-
|
13 |
-
# Load model.
|
14 |
-
weights_path = keras.utils.get_file(
|
15 |
-
origin="https://huggingface.co/mayve/GP/blob/main/%D9%86%D8%B3%D8%AE%D8%A9%20%D9%85%D9%86%20ckpt_epoch_96.h5",
|
16 |
-
file_hash="4b4348297aa9853ff9dc4da7f52dcb240210564400f164e5155e5f4dc1866626"
|
17 |
-
)
|
18 |
-
pokemon_model = keras_cv.models.StableDiffusion(
|
19 |
-
img_width=img_width, img_height=img_height
|
20 |
-
)
|
21 |
-
pokemon_model.diffusion_model.load_weights(weights_path)
|
22 |
-
|
23 |
-
pokemon_model.diffusion_model.compile(jit_compile=True)
|
24 |
-
pokemon_model.decoder.compile(jit_compile=True)
|
25 |
-
pokemon_model.text_encoder.compile(jit_compile=True)
|
26 |
-
|
27 |
-
# Warm-up the model.
|
28 |
-
#_ = pokemon_model.text_to_image("Teddy bear", batch_size=num_images_to_gen)
|
29 |
-
|
30 |
-
|
31 |
-
def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
|
32 |
-
start_time = time.time()
|
33 |
-
# `images is an `np.ndarray`. So we convert it to a list of ndarrays.
|
34 |
-
# Each ndarray represents a generated image.
|
35 |
-
# Reference: https://gradio.app/docs/#gallery
|
36 |
-
images = pokemon_model.text_to_image(
|
37 |
-
prompt,
|
38 |
-
batch_size=num_images_to_gen,
|
39 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
40 |
-
)
|
41 |
-
end_time = time.time()
|
42 |
-
print(f"Time taken: {end_time - start_time} seconds.")
|
43 |
-
return [image for image in images]
|
44 |
-
|
45 |
-
|
46 |
-
description = "This Space demonstrates a fine-tuned Stable Diffusion model. You can use it for generating custom pokemons. To get started, either enter a prompt and pick one from the examples below. For details on the fine-tuning procedure, refer to [this repository](https://github.com/sayakpaul/stable-diffusion-keras-ft/)."
|
47 |
-
article = "This Space leverages a T4 GPU to run the predictions. We use mixed-precision to speed up the inference latency. We further use XLA to carve out maximum performance from TensorFlow."
|
48 |
-
gr.Interface(
|
49 |
-
generate_image_fn,
|
50 |
-
inputs=[
|
51 |
-
gr.Textbox(
|
52 |
-
label="Enter your prompt",
|
53 |
-
max_lines=1,
|
54 |
-
placeholder="cute Sundar Pichai creature",
|
55 |
-
),
|
56 |
-
gr.Slider(value=40, minimum=8, maximum=50, step=1),
|
57 |
-
],
|
58 |
-
outputs=[gr.outputs.Image(type="pil"),gr.outputs.Image(type="pil")],
|
59 |
-
title="Generate custom pokemons",
|
60 |
-
description=description,
|
61 |
-
article=article,
|
62 |
-
examples=[["cute Sundar Pichai creature", 40], ["Hello kitty", 40]],
|
63 |
-
allow_flagging=False,
|
64 |
-
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|