import streamlit as st from config.globals import SPEAKER_TYPES, initial_prompt from langchain.prompts import PromptTemplate from langchain.chains.question_answering import load_qa_chain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI from dotenv import load_dotenv import PyPDF2 import os import io from langchain.document_loaders import PyPDFDirectoryLoader from langchain.embeddings import SentenceTransformerEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough # --- Your RAG chatbot logic --- source_data_folder = "MyData" text_splitter = RecursiveCharacterTextSplitter( separators=["\n\n", "\n", ". ", " ", ""], chunk_size=2000, chunk_overlap=200 ) embeddings_model = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") path_db = "/content/VectorDB" llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro", google_api_key="AIzaSyAnsIVS4x_7lJLe9AYXGLV8FRwUTQkB-1w") # --- Streamlit app starts here --- # Set up the Streamlit app configuration st.set_page_config( page_title="Gemini Pro RAG App", page_icon="🔍", layout="wide", initial_sidebar_state="expanded", ) # Initialize session state for chat history and vectorstore (PDF context) if 'chat_history' not in st.session_state: st.session_state.chat_history = [initial_prompt] if 'vectorstore' not in st.session_state: st.session_state.vectorstore = None # Function to clear chat history def clear_chat_history(): st.session_state.chat_history = [initial_prompt] # Extract text from PDF def extract_text_from_pdf(pdf_bytes): pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes)) text = "" for page in pdf_reader.pages: text += page.extract_text() return text # Initialize vectorstore def initialize_vector_index(text): docs = [{'page_content': text}] splits = text_splitter.split_documents(docs) vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings_model, persist_directory=path_db) return vectorstore # Sidebar configuration with st.sidebar: st.title('🔍 Gemini RAG Chatbot') st.write('This chatbot uses the Gemini Pro API with RAG capabilities.') st.button('Clear Chat History', on_click=clear_chat_history, type='primary') uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"], help="Upload your PDF file here to start the analysis.") if uploaded_file is not None: st.success("PDF File Uploaded Successfully!") text = extract_text_from_pdf(uploaded_file.read()) vectorstore = initialize_vector_index(text) st.session_state.vectorstore = vectorstore # Main interface st.header('Gemini Pro RAG Chatbot') st.subheader('Upload a PDF and ask questions about its content!') # Display the welcome prompt if chat history is only the initial prompt if len(st.session_state.chat_history) == 1: with st.chat_message(SPEAKER_TYPES.BOT, avatar="🔍"): st.write(initial_prompt['content']) # Get user input prompt = st.chat_input("Ask a question about the PDF content:", key="user_input") # Function to get a response from RAG chain def get_rag_response(prompt): retriever = st.session_state.vectorstore.as_retriever() # Use the stored vectorstore retriever rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) response = rag_chain.invoke(prompt) return response # Handle the user prompt and generate response if prompt: # Add user prompt to chat history st.session_state.chat_history.append({'role': SPEAKER_TYPES.USER, 'content': prompt}) # Display chat messages from the chat history for message in st.session_state.chat_history[1:]: with st.chat_message(message["role"], avatar="👤" if message['role'] == SPEAKER_TYPES.USER else "🔍"): st.write(message["content"]) # Get the response using the RAG chain with st.spinner(text='Generating response...'): response_text = get_rag_response(prompt) st.session_state.chat_history.append({'role': SPEAKER_TYPES.BOT, 'content': response_text}) # Display the bot response with st.chat_message(SPEAKER_TYPES.BOT, avatar="🔍"): st.write(response_text) # Add footer for additional information or credits st.markdown("""