Spaces:
Sleeping
Sleeping
import gradio as gr | |
import wave | |
import numpy as np | |
from io import BytesIO | |
from huggingface_hub import hf_hub_download | |
from piper import PiperVoice | |
from transformers import pipeline | |
import hazm | |
import typing | |
normalizer = hazm.Normalizer() | |
sent_tokenizer = hazm.SentenceTokenizer() | |
word_tokenizer = hazm.WordTokenizer() | |
tagger_path = hf_hub_download(repo_id="gyroing/HAZM_POS_TAGGER", filename="pos_tagger.model") | |
tagger = hazm.POSTagger(model=tagger_path) | |
model_path = hf_hub_download(repo_id="gyroing/Persian-Piper-Model-gyro", filename="fa_IR-gyro-medium.onnx") | |
config_path = hf_hub_download(repo_id="gyroing/Persian-Piper-Model-gyro", filename="fa_IR-gyro-medium.onnx.json") | |
voice = PiperVoice.load(model_path, config_path) | |
def preprocess_text(text: str) -> typing.List[typing.List[str]]: | |
"""Split/normalize text into sentences/words with hazm""" | |
text = normalizer.normalize(text) | |
processed_sentences = [] | |
for sentence in sent_tokenizer.tokenize(text): | |
words = word_tokenizer.tokenize(sentence) | |
processed_words = fix_words(words) | |
processed_sentences.append(" ".join(processed_words)) | |
return " ".join(processed_sentences) | |
def fix_words(words: typing.List[str]) -> typing.List[str]: | |
fixed_words = [] | |
for word, pos in tagger.tag(words): | |
if pos[-1] == "Z": | |
if word[-1] != "ِ": | |
if (word[-1] == "ه") and (word[-2] != "ا"): | |
word += "ی" | |
word += "ِ" | |
fixed_words.append(word) | |
return fixed_words | |
def synthesize_speech(text): | |
# Create an in-memory buffer for the WAV file | |
buffer = BytesIO() | |
with wave.open(buffer, 'wb') as wav_file: | |
wav_file.setframerate(voice.config.sample_rate) | |
wav_file.setsampwidth(2) # 16-bit | |
wav_file.setnchannels(1) # mono | |
# Synthesize speech | |
eztext = preprocess_text(text) | |
voice.synthesize(eztext, wav_file) | |
# Convert buffer to NumPy array for Gradio output | |
buffer.seek(0) | |
audio_data = np.frombuffer(buffer.read(), dtype=np.int16) | |
return audio_data.tobytes() | |
# Using Gradio Blocks | |
with gr.Blocks(theme=gr.themes.Base()) as blocks: | |
input_text = gr.Textbox(label="Input") | |
output_audio = gr.Audio(label="Output", type="numpy") | |
submit_button = gr.Button("Synthesize") | |
submit_button.click(synthesize_speech, inputs=input_text, outputs=[output_audio]) | |
# Run the app | |
blocks.launch() |