import gradio as gr from Recommender import Recommender from Preprocess import ModelUtils, Preprocess data_path = "data" model_path = "model_root" data = pd.read_csv(data_path) modelu = ModelUtils(model_path) modelu.make_dirs() modelu.download_model() p = Preprocess("/content") data = pd.read_csv(data_path) rec = Recommender (4, 3, 0) k = 3 table = [tuple(row) for row in data.to_numpy()] def recom (title) : rec.recommend_k(table, k, title) demo = gr.Interface(fn=recom, inputs=[gr.Dropdown(choices = list(desc['title'][:20]), multiselect=True, max_choices=3, label="Movies"), gr.Radio(["bert", "scibert", "nltk" , "none"], value="none", label="Tokenization and text preprocess")], outputs=gr.Textbox(label="Recommended")) demo.launch()