File size: 7,553 Bytes
31f8407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python

import math
import numpy as np
from multiprocessing import Pool, cpu_count

"""
All of these algorithms have been taken from the paper:
Trotmam et al, Improvements to BM25 and Language Models Examined

Here we implement all the BM25 variations mentioned. 
"""


class BM25:
    def __init__(self, corpus, tokenizer=None):
        self.corpus_size = 0
        self.avgdl = 0
        self.doc_freqs = []
        self.idf = {}
        self.doc_len = []
        self.tokenizer = tokenizer

        if tokenizer:
            corpus = self._tokenize_corpus(corpus)

        nd = self._initialize(corpus)
        self._calc_idf(nd)

    def _initialize(self, corpus):
        nd = {}  # word -> number of documents with word
        num_doc = 0
        for document in corpus:
            self.doc_len.append(len(document))
            num_doc += len(document)

            frequencies = {}
            for word in document:
                if word not in frequencies:
                    frequencies[word] = 0
                frequencies[word] += 1
            self.doc_freqs.append(frequencies)

            for word, freq in frequencies.items():
                try:
                    nd[word]+=1
                except KeyError:
                    nd[word] = 1

            self.corpus_size += 1

        self.avgdl = num_doc / self.corpus_size
        return nd

    def _tokenize_corpus(self, corpus):
        pool = Pool(cpu_count())
        tokenized_corpus = pool.map(self.tokenizer, corpus)
        return tokenized_corpus

    def _calc_idf(self, nd):
        raise NotImplementedError()

    def get_scores(self, query):
        raise NotImplementedError()

    def get_batch_scores(self, query, doc_ids):
        raise NotImplementedError()

    def get_top_n(self, query, documents, n=5):

        assert self.corpus_size == len(documents), "The documents given don't match the index corpus!"

        scores = self.get_scores(query)
        top_n = np.argsort(scores)[::-1][:n]
        return {documents[i]:i for i in top_n}


class BM25Okapi(BM25):
    def __init__(self, corpus, tokenizer=None, k1=1.5, b=0.75, epsilon=0.25):
        self.k1 = k1
        self.b = b
        self.epsilon = epsilon
        super().__init__(corpus, tokenizer)

    def _calc_idf(self, nd):
        """
        Calculates frequencies of terms in documents and in corpus.
        This algorithm sets a floor on the idf values to eps * average_idf
        """
        # collect idf sum to calculate an average idf for epsilon value
        idf_sum = 0
        # collect words with negative idf to set them a special epsilon value.
        # idf can be negative if word is contained in more than half of documents
        negative_idfs = []
        for word, freq in nd.items():
            idf = math.log(self.corpus_size - freq + 0.5) - math.log(freq + 0.5)
            self.idf[word] = idf
            idf_sum += idf
            if idf < 0:
                negative_idfs.append(word)
        self.average_idf = idf_sum / len(self.idf)

        eps = self.epsilon * self.average_idf
        for word in negative_idfs:
            self.idf[word] = eps

    def get_scores(self, query):
        """
        The ATIRE BM25 variant uses an idf function which uses a log(idf) score. To prevent negative idf scores,
        this algorithm also adds a floor to the idf value of epsilon.
        See [Trotman, A., X. Jia, M. Crane, Towards an Efficient and Effective Search Engine] for more info
        :param query:
        :return:
        """
        score = np.zeros(self.corpus_size)
        doc_len = np.array(self.doc_len)
        for q in query:
            q_freq = np.array([(doc.get(q) or 0) for doc in self.doc_freqs])
            score += (self.idf.get(q) or 0) * (q_freq * (self.k1 + 1) /
                                               (q_freq + self.k1 * (1 - self.b + self.b * doc_len / self.avgdl)))
        return score

    def get_batch_scores(self, query, doc_ids):
        """
        Calculate bm25 scores between query and subset of all docs
        """
        assert all(di < len(self.doc_freqs) for di in doc_ids)
        score = np.zeros(len(doc_ids))
        doc_len = np.array(self.doc_len)[doc_ids]
        for q in query:
            q_freq = np.array([(self.doc_freqs[di].get(q) or 0) for di in doc_ids])
            score += (self.idf.get(q) or 0) * (q_freq * (self.k1 + 1) /
                                               (q_freq + self.k1 * (1 - self.b + self.b * doc_len / self.avgdl)))
        return score.tolist()


class BM25L(BM25):
    def __init__(self, corpus, tokenizer=None, k1=1.5, b=0.75, delta=0.5):
        # Algorithm specific parameters
        self.k1 = k1
        self.b = b
        self.delta = delta
        super().__init__(corpus, tokenizer)

    def _calc_idf(self, nd):
        for word, freq in nd.items():
            idf = math.log(self.corpus_size + 1) - math.log(freq + 0.5)
            self.idf[word] = idf

    def get_scores(self, query):
        score = np.zeros(self.corpus_size)
        doc_len = np.array(self.doc_len)
        for q in query:
            q_freq = np.array([(doc.get(q) or 0) for doc in self.doc_freqs])
            ctd = q_freq / (1 - self.b + self.b * doc_len / self.avgdl)
            score += (self.idf.get(q) or 0) * (self.k1 + 1) * (ctd + self.delta) / \
                     (self.k1 + ctd + self.delta)
        return score

    def get_batch_scores(self, query, doc_ids):
        """
        Calculate bm25 scores between query and subset of all docs
        """
        assert all(di < len(self.doc_freqs) for di in doc_ids)
        score = np.zeros(len(doc_ids))
        doc_len = np.array(self.doc_len)[doc_ids]
        for q in query:
            q_freq = np.array([(self.doc_freqs[di].get(q) or 0) for di in doc_ids])
            ctd = q_freq / (1 - self.b + self.b * doc_len / self.avgdl)
            score += (self.idf.get(q) or 0) * (self.k1 + 1) * (ctd + self.delta) / \
                     (self.k1 + ctd + self.delta)
        return score.tolist()


class BM25Plus(BM25):
    def __init__(self, corpus, tokenizer=None, k1=1.5, b=0.75, delta=1):
        # Algorithm specific parameters
        self.k1 = k1
        self.b = b
        self.delta = delta
        super().__init__(corpus, tokenizer)

    def _calc_idf(self, nd):
        for word, freq in nd.items():
            idf = math.log(self.corpus_size + 1) - math.log(freq)
            self.idf[word] = idf

    def get_scores(self, query):
        score = np.zeros(self.corpus_size)
        doc_len = np.array(self.doc_len)
        for q in query:
            q_freq = np.array([(doc.get(q) or 0) for doc in self.doc_freqs])
            score += (self.idf.get(q) or 0) * (self.delta + (q_freq * (self.k1 + 1)) /
                                               (self.k1 * (1 - self.b + self.b * doc_len / self.avgdl) + q_freq))
        return score

    def get_batch_scores(self, query, doc_ids):
        """
        Calculate bm25 scores between query and subset of all docs
        """
        assert all(di < len(self.doc_freqs) for di in doc_ids)
        score = np.zeros(len(doc_ids))
        doc_len = np.array(self.doc_len)[doc_ids]
        for q in query:
            q_freq = np.array([(self.doc_freqs[di].get(q) or 0) for di in doc_ids])
            score += (self.idf.get(q) or 0) * (self.delta + (q_freq * (self.k1 + 1)) /
                                               (self.k1 * (1 - self.b + self.b * doc_len / self.avgdl) + q_freq))
        return score.tolist()