Spaces:
Build error
Build error
import gc | |
import math | |
import os | |
import shutil | |
from argparse import Namespace, ArgumentParser, FileType | |
import torch.nn.functional as F | |
import wandb | |
import torch | |
from sklearn.metrics import roc_auc_score | |
from torch_geometric.loader import DataListLoader, DataLoader | |
from tqdm import tqdm | |
from confidence.dataset import ConfidenceDataset | |
from utils.training import AverageMeter | |
torch.multiprocessing.set_sharing_strategy('file_system') | |
import yaml | |
from utils.utils import save_yaml_file, get_optimizer_and_scheduler, get_model | |
parser = ArgumentParser() | |
parser.add_argument('--config', type=FileType(mode='r'), default=None) | |
parser.add_argument('--original_model_dir', type=str, default='workdir', help='Path to folder with trained model and hyperparameters') | |
parser.add_argument('--restart_dir', type=str, default=None, help='') | |
parser.add_argument('--use_original_model_cache', action='store_true', default=False, help='If this is true, the same dataset as in the original model will be used. Otherwise, the dataset parameters are used.') | |
parser.add_argument('--data_dir', type=str, default='data/PDBBind_processed/', help='Folder containing original structures') | |
parser.add_argument('--ckpt', type=str, default='best_model.pt', help='Checkpoint to use inside the folder') | |
parser.add_argument('--model_save_frequency', type=int, default=0, help='Frequency with which to save the last model. If 0, then only the early stopping criterion best model is saved and overwritten.') | |
parser.add_argument('--best_model_save_frequency', type=int, default=0, help='Frequency with which to save the best model. If 0, then only the early stopping criterion best model is saved and overwritten.') | |
parser.add_argument('--run_name', type=str, default='test_confidence', help='') | |
parser.add_argument('--project', type=str, default='diffdock_confidence', help='') | |
parser.add_argument('--split_train', type=str, default='data/splits/timesplit_no_lig_overlap_train', help='Path of file defining the split') | |
parser.add_argument('--split_val', type=str, default='data/splits/timesplit_no_lig_overlap_val', help='Path of file defining the split') | |
parser.add_argument('--split_test', type=str, default='data/splits/timesplit_test', help='Path of file defining the split') | |
# Inference parameters for creating the positions and rmsds that the confidence predictor will be trained on. | |
parser.add_argument('--cache_path', type=str, default='data/cacheNew', help='Folder from where to load/restore cached dataset') | |
parser.add_argument('--cache_ids_to_combine', nargs='+', type=str, default=None, help='RMSD value below which a prediction is considered a postitive. This can also be multiple cutoffs.') | |
parser.add_argument('--cache_creation_id', type=int, default=None, help='number of times that inference is run on the full dataset before concatenating it and coming up with the full confidence dataset') | |
parser.add_argument('--wandb', action='store_true', default=False, help='') | |
parser.add_argument('--inference_steps', type=int, default=2, help='Number of denoising steps') | |
parser.add_argument('--samples_per_complex', type=int, default=3, help='') | |
parser.add_argument('--balance', action='store_true', default=False, help='If this is true than we do not force the samples seen during training to be the same amount of negatives as positives') | |
parser.add_argument('--rmsd_prediction', action='store_true', default=False, help='') | |
parser.add_argument('--rmsd_classification_cutoff', nargs='+', type=float, default=2, help='RMSD value below which a prediction is considered a postitive. This can also be multiple cutoffs.') | |
parser.add_argument('--log_dir', type=str, default='workdir', help='') | |
parser.add_argument('--main_metric', type=str, default='accuracy', help='Metric to track for early stopping. Mostly [loss, accuracy, ROC AUC]') | |
parser.add_argument('--main_metric_goal', type=str, default='max', help='Can be [min, max]') | |
parser.add_argument('--transfer_weights', action='store_true', default=False, help='') | |
parser.add_argument('--batch_size', type=int, default=5, help='') | |
parser.add_argument('--lr', type=float, default=1e-3, help='') | |
parser.add_argument('--w_decay', type=float, default=0.0, help='') | |
parser.add_argument('--scheduler', type=str, default='plateau', help='') | |
parser.add_argument('--scheduler_patience', type=int, default=20, help='') | |
parser.add_argument('--n_epochs', type=int, default=5, help='') | |
# Dataset | |
parser.add_argument('--limit_complexes', type=int, default=0, help='') | |
parser.add_argument('--all_atoms', action='store_true', default=True, help='') | |
parser.add_argument('--multiplicity', type=int, default=1, help='') | |
parser.add_argument('--chain_cutoff', type=float, default=10, help='') | |
parser.add_argument('--receptor_radius', type=float, default=30, help='') | |
parser.add_argument('--c_alpha_max_neighbors', type=int, default=10, help='') | |
parser.add_argument('--atom_radius', type=float, default=5, help='') | |
parser.add_argument('--atom_max_neighbors', type=int, default=8, help='') | |
parser.add_argument('--matching_popsize', type=int, default=20, help='') | |
parser.add_argument('--matching_maxiter', type=int, default=20, help='') | |
parser.add_argument('--max_lig_size', type=int, default=None, help='Maximum number of heavy atoms') | |
parser.add_argument('--remove_hs', action='store_true', default=False, help='remove Hs') | |
parser.add_argument('--num_conformers', type=int, default=1, help='') | |
parser.add_argument('--esm_embeddings_path', type=str, default=None,help='If this is set then the LM embeddings at that path will be used for the receptor features') | |
parser.add_argument('--no_torsion', action='store_true', default=False, help='') | |
# Model | |
parser.add_argument('--num_conv_layers', type=int, default=2, help='Number of interaction layers') | |
parser.add_argument('--max_radius', type=float, default=5.0, help='Radius cutoff for geometric graph') | |
parser.add_argument('--scale_by_sigma', action='store_true', default=True, help='Whether to normalise the score') | |
parser.add_argument('--ns', type=int, default=16, help='Number of hidden features per node of order 0') | |
parser.add_argument('--nv', type=int, default=4, help='Number of hidden features per node of order >0') | |
parser.add_argument('--distance_embed_dim', type=int, default=32, help='') | |
parser.add_argument('--cross_distance_embed_dim', type=int, default=32, help='') | |
parser.add_argument('--no_batch_norm', action='store_true', default=False, help='If set, it removes the batch norm') | |
parser.add_argument('--use_second_order_repr', action='store_true', default=False, help='Whether to use only up to first order representations or also second') | |
parser.add_argument('--cross_max_distance', type=float, default=80, help='') | |
parser.add_argument('--dynamic_max_cross', action='store_true', default=False, help='') | |
parser.add_argument('--dropout', type=float, default=0.0, help='MLP dropout') | |
parser.add_argument('--embedding_type', type=str, default="sinusoidal", help='') | |
parser.add_argument('--sigma_embed_dim', type=int, default=32, help='') | |
parser.add_argument('--embedding_scale', type=int, default=10000, help='') | |
parser.add_argument('--confidence_no_batchnorm', action='store_true', default=False, help='') | |
parser.add_argument('--confidence_dropout', type=float, default=0.0, help='MLP dropout in confidence readout') | |
args = parser.parse_args() | |
if args.config: | |
config_dict = yaml.load(args.config, Loader=yaml.FullLoader) | |
arg_dict = args.__dict__ | |
for key, value in config_dict.items(): | |
if isinstance(value, list): | |
for v in value: | |
arg_dict[key].append(v) | |
else: | |
arg_dict[key] = value | |
args.config = args.config.name | |
assert(args.main_metric_goal == 'max' or args.main_metric_goal == 'min') | |
def train_epoch(model, loader, optimizer, rmsd_prediction): | |
model.train() | |
meter = AverageMeter(['confidence_loss']) | |
for data in tqdm(loader, total=len(loader)): | |
if device.type == 'cuda' and len(data) % torch.cuda.device_count() == 1 or device.type == 'cpu' and data.num_graphs == 1: | |
print("Skipping batch of size 1 since otherwise batchnorm would not work.") | |
optimizer.zero_grad() | |
try: | |
pred = model(data) | |
if rmsd_prediction: | |
labels = torch.cat([graph.rmsd for graph in data]).to(device) if isinstance(data, list) else data.rmsd | |
confidence_loss = F.mse_loss(pred, labels) | |
else: | |
if isinstance(args.rmsd_classification_cutoff, list): | |
labels = torch.cat([graph.y_binned for graph in data]).to(device) if isinstance(data, list) else data.y_binned | |
confidence_loss = F.cross_entropy(pred, labels) | |
else: | |
labels = torch.cat([graph.y for graph in data]).to(device) if isinstance(data, list) else data.y | |
confidence_loss = F.binary_cross_entropy_with_logits(pred, labels) | |
confidence_loss.backward() | |
optimizer.step() | |
meter.add([confidence_loss.cpu().detach()]) | |
except RuntimeError as e: | |
if 'out of memory' in str(e): | |
print('| WARNING: ran out of memory, skipping batch') | |
for p in model.parameters(): | |
if p.grad is not None: | |
del p.grad # free some memory | |
torch.cuda.empty_cache() | |
gc.collect() | |
continue | |
else: | |
raise e | |
return meter.summary() | |
def test_epoch(model, loader, rmsd_prediction): | |
model.eval() | |
meter = AverageMeter(['loss'], unpooled_metrics=True) if rmsd_prediction else AverageMeter(['confidence_loss', 'accuracy', 'ROC AUC'], unpooled_metrics=True) | |
all_labels = [] | |
all_affinities = [] | |
for data in tqdm(loader, total=len(loader)): | |
try: | |
with torch.no_grad(): | |
pred = model(data) | |
affinity_loss = torch.tensor(0.0, dtype=torch.float, device=pred[0].device) | |
accuracy = torch.tensor(0.0, dtype=torch.float, device=pred[0].device) | |
if rmsd_prediction: | |
labels = torch.cat([graph.rmsd for graph in data]).to(device) if isinstance(data, list) else data.rmsd | |
confidence_loss = F.mse_loss(pred, labels) | |
meter.add([confidence_loss.cpu().detach()]) | |
else: | |
if isinstance(args.rmsd_classification_cutoff, list): | |
labels = torch.cat([graph.y_binned for graph in data]).to(device) if isinstance(data,list) else data.y_binned | |
confidence_loss = F.cross_entropy(pred, labels) | |
else: | |
labels = torch.cat([graph.y for graph in data]).to(device) if isinstance(data, list) else data.y | |
confidence_loss = F.binary_cross_entropy_with_logits(pred, labels) | |
accuracy = torch.mean((labels == (pred > 0).float()).float()) | |
try: | |
roc_auc = roc_auc_score(labels.detach().cpu().numpy(), pred.detach().cpu().numpy()) | |
except ValueError as e: | |
if 'Only one class present in y_true. ROC AUC score is not defined in that case.' in str(e): | |
roc_auc = 0 | |
else: | |
raise e | |
meter.add([confidence_loss.cpu().detach(), accuracy.cpu().detach(), torch.tensor(roc_auc)]) | |
all_labels.append(labels) | |
except RuntimeError as e: | |
if 'out of memory' in str(e): | |
print('| WARNING: ran out of memory, skipping batch') | |
for p in model.parameters(): | |
if p.grad is not None: | |
del p.grad # free some memory | |
torch.cuda.empty_cache() | |
continue | |
else: | |
raise e | |
all_labels = torch.cat(all_labels) | |
if rmsd_prediction: | |
baseline_metric = ((all_labels - all_labels.mean()).abs()).mean() | |
else: | |
baseline_metric = all_labels.sum() / len(all_labels) | |
results = meter.summary() | |
results.update({'baseline_metric': baseline_metric}) | |
return meter.summary(), baseline_metric | |
def train(args, model, optimizer, scheduler, train_loader, val_loader, run_dir): | |
best_val_metric = math.inf if args.main_metric_goal == 'min' else 0 | |
best_epoch = 0 | |
print("Starting training...") | |
for epoch in range(args.n_epochs): | |
logs = {} | |
train_metrics = train_epoch(model, train_loader, optimizer, args.rmsd_prediction) | |
print("Epoch {}: Training loss {:.4f}".format(epoch, train_metrics['confidence_loss'])) | |
val_metrics, baseline_metric = test_epoch(model, val_loader, args.rmsd_prediction) | |
if args.rmsd_prediction: | |
print("Epoch {}: Validation loss {:.4f}".format(epoch, val_metrics['confidence_loss'])) | |
else: | |
print("Epoch {}: Validation loss {:.4f} accuracy {:.4f}".format(epoch, val_metrics['confidence_loss'], val_metrics['accuracy'])) | |
if args.wandb: | |
logs.update({'valinf_' + k: v for k, v in val_metrics.items()}, step=epoch + 1) | |
logs.update({'train_' + k: v for k, v in train_metrics.items()}, step=epoch + 1) | |
logs.update({'mean_rmsd' if args.rmsd_prediction else 'fraction_positives': baseline_metric, | |
'current_lr': optimizer.param_groups[0]['lr']}) | |
wandb.log(logs, step=epoch + 1) | |
if scheduler: | |
scheduler.step(val_metrics[args.main_metric]) | |
state_dict = model.module.state_dict() if device.type == 'cuda' else model.state_dict() | |
if args.main_metric_goal == 'min' and val_metrics[args.main_metric] < best_val_metric or \ | |
args.main_metric_goal == 'max' and val_metrics[args.main_metric] > best_val_metric: | |
best_val_metric = val_metrics[args.main_metric] | |
best_epoch = epoch | |
torch.save(state_dict, os.path.join(run_dir, 'best_model.pt')) | |
if args.model_save_frequency > 0 and (epoch + 1) % args.model_save_frequency == 0: | |
torch.save(state_dict, os.path.join(run_dir, f'model_epoch{epoch+1}.pt')) | |
if args.best_model_save_frequency > 0 and (epoch + 1) % args.best_model_save_frequency == 0: | |
shutil.copyfile(os.path.join(run_dir, 'best_model.pt'), os.path.join(run_dir, f'best_model_epoch{epoch+1}.pt')) | |
torch.save({ | |
'epoch': epoch, | |
'model': state_dict, | |
'optimizer': optimizer.state_dict(), | |
}, os.path.join(run_dir, 'last_model.pt')) | |
print("Best Validation accuracy {} on Epoch {}".format(best_val_metric, best_epoch)) | |
def construct_loader_confidence(args, device): | |
common_args = {'cache_path': args.cache_path, 'original_model_dir': args.original_model_dir, 'device': device, | |
'inference_steps': args.inference_steps, 'samples_per_complex': args.samples_per_complex, | |
'limit_complexes': args.limit_complexes, 'all_atoms': args.all_atoms, 'balance': args.balance, 'rmsd_classification_cutoff': args.rmsd_classification_cutoff, | |
'use_original_model_cache': args.use_original_model_cache, 'cache_creation_id': args.cache_creation_id, "cache_ids_to_combine": args.cache_ids_to_combine} | |
loader_class = DataListLoader if torch.cuda.is_available() else DataLoader | |
exception_flag = False | |
try: | |
train_dataset = ConfidenceDataset(split="train", args=args, **common_args) | |
train_loader = loader_class(dataset=train_dataset, batch_size=args.batch_size, shuffle=True) | |
except Exception as e: | |
if 'The generated ligand positions with cache_id do not exist:' in str(e): | |
print("HAPPENING | Encountered the following exception when loading the confidence train dataset:") | |
print(str(e)) | |
print("HAPPENING | We are still continuing because we want to try to generate the validation dataset if it has not been created yet:") | |
exception_flag = True | |
else: raise e | |
val_dataset = ConfidenceDataset(split="val", args=args, **common_args) | |
val_loader = loader_class(dataset=val_dataset, batch_size=args.batch_size, shuffle=True) | |
if exception_flag: raise Exception('We encountered the exception during train dataset loading: ', e) | |
return train_loader, val_loader | |
if __name__ == '__main__': | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
with open(f'{args.original_model_dir}/model_parameters.yml') as f: | |
score_model_args = Namespace(**yaml.full_load(f)) | |
# construct loader | |
train_loader, val_loader = construct_loader_confidence(args, device) | |
model = get_model(score_model_args if args.transfer_weights else args, device, t_to_sigma=None, confidence_mode=True) | |
optimizer, scheduler = get_optimizer_and_scheduler(args, model, scheduler_mode=args.main_metric_goal) | |
if args.transfer_weights: | |
print("HAPPENING | Transferring weights from original_model_dir to the new model after using original_model_dir's arguments to construct the new model.") | |
checkpoint = torch.load(os.path.join(args.original_model_dir,args.ckpt), map_location=device) | |
model_state_dict = model.state_dict() | |
transfer_weights_dict = {k: v for k, v in checkpoint.items() if k in list(model_state_dict.keys())} | |
model_state_dict.update(transfer_weights_dict) # update the layers with the pretrained weights | |
model.load_state_dict(model_state_dict) | |
elif args.restart_dir: | |
dict = torch.load(f'{args.restart_dir}/last_model.pt', map_location=torch.device('cpu')) | |
model.module.load_state_dict(dict['model'], strict=True) | |
optimizer.load_state_dict(dict['optimizer']) | |
print("Restarting from epoch", dict['epoch']) | |
numel = sum([p.numel() for p in model.parameters()]) | |
print('Model with', numel, 'parameters') | |
if args.wandb: | |
wandb.init( | |
entity='entity', | |
settings=wandb.Settings(start_method="fork"), | |
project=args.project, | |
name=args.run_name, | |
config=args | |
) | |
wandb.log({'numel': numel}) | |
# record parameters | |
run_dir = os.path.join(args.log_dir, args.run_name) | |
yaml_file_name = os.path.join(run_dir, 'model_parameters.yml') | |
save_yaml_file(yaml_file_name, args.__dict__) | |
args.device = device | |
train(args, model, optimizer, scheduler, train_loader, val_loader, run_dir) | |