PicoAudio / pico_model.py
ZeyuXie's picture
Upload 167 files
8c1bf05 verified
raw
history blame
15.4 kB
import random
import numpy as np
from tqdm import tqdm
from einops import repeat
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.utils.torch_utils import randn_tensor
from diffusers import DDPMScheduler, UNet2DConditionModel
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL
from audioldm.utils import default_audioldm_config, get_metadata
def build_pretrained_models(name):
checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu")
scale_factor = checkpoint["state_dict"]["scale_factor"].item()
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k}
config = default_audioldm_config(name)
vae_config = config["model"]["params"]["first_stage_config"]["params"]
vae_config["scale_factor"] = scale_factor
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(vae_state_dict)
fn_STFT = TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
vae.eval()
fn_STFT.eval()
return vae, fn_STFT
def _init_layer(layer):
"""Initialize a Linear or Convolutional layer. """
nn.init.xavier_uniform_(layer.weight)
if hasattr(layer, 'bias'):
if layer.bias is not None:
layer.bias.data.fill_(0.)
class ClapText_Onset_2_Audio_Diffusion(nn.Module):
def __init__(
self,
scheduler_name,
unet_model_config_path=None,
snr_gamma=None,
uncondition=False,
):
super().__init__()
assert unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
self.scheduler_name = scheduler_name
self.unet_model_config_path = unet_model_config_path
self.snr_gamma = snr_gamma
self.uncondition = uncondition
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")
def compute_snr(self, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def encode_channel(self, input):
# input [batch, 32, 256] -> [batch, 2, 256, 16]
return input.reshape(input.shape[0], 2, 16, 256).transpose(2, 3)
def encode_text(self, input_dict):
device = self.device
encoder_hidden_states = input_dict["event_info"].repeat_interleave(2, -1).unsqueeze(1)
boolean_encoder_mask = (torch.ones(len(encoder_hidden_states), 1) == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def forward(self, input_dict, validation_mode=False):
device = self.device
latents = input_dict["latent"]
num_train_timesteps = self.noise_scheduler.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
# [batch, 1, 1024], [batch, 1]
encoder_hidden_states, boolean_encoder_mask = self.encode_text(input_dict)
if self.uncondition:
mask_indices = [k for k in range(len(latents)) if random.random() < 0.1]
if len(mask_indices) > 0:
encoder_hidden_states[mask_indices] = 0
bsz = latents.shape[0]
if validation_mode:
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
else:
# Sample a random timestep for each instance
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
timesteps = timesteps.long()
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
onset_emb = self.encode_channel(input_dict["onset"])
# [batch, channel:8, 256, 16] + [batch, onset:2, 256, 16]
onset_noisy_latents = torch.cat((onset_emb, noisy_latents), dim=1)
# Get the target for loss depending on the prediction type
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
model_pred = self.unet(
onset_noisy_latents, timesteps, encoder_hidden_states,
#encoder_attention_mask=boolean_encoder_mask
).sample
if self.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
return loss
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
shape = (batch_size, num_channels_latents, 256, 16)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * inference_scheduler.init_noise_sigma
return latents
def encode_text_classifier_free(self, input_dict, num_samples_per_prompt):
device = self.device
prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict)
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
negative_prompt_embeds = torch.zeros(prompt_embeds.shape).to(device)
uncond_attention_mask = (torch.ones(attention_mask.shape) == 1).to(device)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask
@torch.no_grad()
def inference(self, input_dict, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True):
prompt = input_dict["onset"]
device = self.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(prompt) * num_samples_per_prompt
if classifier_free_guidance:
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(input_dict, num_samples_per_prompt)
else:
prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict)
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
inference_scheduler.set_timesteps(num_steps, device=device)
timesteps = inference_scheduler.timesteps
num_channels_latents = self.unet.config.in_channels - 2
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
onset_emb = self.encode_channel(input_dict["onset"]).repeat_interleave(num_samples_per_prompt, 0)
onset_latents = torch.cat((onset_emb, latents), dim=1)
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
for i, t in tqdm(enumerate(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([onset_latents] * 2) if classifier_free_guidance else onset_latents
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=prompt_embeds,
encoder_attention_mask=boolean_prompt_mask
).sample
# perform guidance
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
onset_latents = torch.cat((onset_emb, latents), dim=1)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
progress_bar.update(1)
return latents
##############################
### Demo utils
##############################
from sklearn.metrics.pairwise import cosine_similarity
import laion_clap
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
class PicoDiffusion(ClapText_Onset_2_Audio_Diffusion):
def __init__(self,
scheduler_name,
unet_model_config_path=None,
snr_gamma=None,
uncondition=False,
freeze_text_encoder_ckpt=None,
diffusion_pt=None,
):
super().__init__(scheduler_name, unet_model_config_path, snr_gamma, uncondition)
self.freeze_text_encoder = laion_clap.CLAP_Module(enable_fusion=False)
#load pretrain params
ckpt = clap_load_state_dict(freeze_text_encoder_ckpt, skip_params=True)
del_parameter_key = ["text_branch.embeddings.position_ids"]
ckpt = {f"freeze_text_encoder.model.{k}":v for k, v in ckpt.items() if k not in del_parameter_key}
diffusion_ckpt = torch.load(diffusion_pt)
del diffusion_ckpt["class_emb.weight"]
ckpt.update(diffusion_ckpt)
self.load_state_dict(ckpt)
self.event_list = [
"burping_belching", # 0
"car_horn_honking", #
"cat_meowing", #
"cow_mooing", #
"dog_barking", #
"door_knocking", #
"door_slamming", #
"explosion", #
"gunshot", # 8
"sheep_goat_bleating", #
"sneeze", #
"spraying", #
"thump_thud", #
"train_horn", #
"tapping_clicking_clanking", #
"woman_laughing", #
"duck_quacking", # 16
"whistling", #
]
self.events_emb = self.freeze_text_encoder.get_text_embedding(self.event_list, use_tensor=False)
@torch.no_grad()
def demo_inference(self, timestampCaption, scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True):
#"timestampCaption": "event1__onset1-offset1_onset2-offset2--event2__onset1-offset1"
#"timestampCaption": "event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1."
device = self.device
timestamp_matrix = np.zeros((32, 256))
events = []
timestampCaption = timestampCaption.rstrip('.')
for event_timestamp in timestampCaption.split(' and '):
# event_timestamp : event1__onset1-offset1_onset2-offset2
(event, instance) = event_timestamp.split(' at ')
events.append(event)
# instance : onset1-offset1_onset2-offset2
event_emb = self.freeze_text_encoder.get_text_embedding([event, ""], use_tensor=False)[0]
event_id = np.argmax(cosine_similarity(event_emb.reshape(1, -1), self.events_emb))
for start_end in instance.split('_'):
(start, end) = start_end.split('-')
start, end = int(float(start)*250/10), int(float(end)*250/10)
if end > 250: break
timestamp_matrix[event_id, start: end] = 1
#event_info = self.clap_scorer.get_text_embedding([" and ".join(events), ""], use_tensor=False)[0]
event_info = self.freeze_text_encoder.get_text_embedding([" and ".join(events), ""], use_tensor=True)[0].unsqueeze(0)
timestamp_matrix = torch.tensor(timestamp_matrix, dtype=torch.float32).unsqueeze(0).to(device)
latents = self.inference({"onset":timestamp_matrix, "event_info":event_info.to(device)}, scheduler, num_steps, guidance_scale, num_samples_per_prompt, disable_progress)
return latents