PicoAudio / app.py
ZeyuXie's picture
Create app.py
f3f28d3 verified
raw
history blame
3.6 kB
import os
import json
import numpy as np
import torch
import soundfile as sf
from diffusers import DDPMScheduler
from pico_model import PicoDiffusion, build_pretrained_models
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class InferRunner:
def __init__(self):
self.vae, _ = build_pretrained_models("audioldm-s-full")
train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0]))
self.pico_model = PicoDiffusion(
scheduler_name=train_args.scheduler_name,
unet_model_config_path=train_args.unet_model_config,
snr_gamma=train_args.snr_gamma,
freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt",
diffusion_pt="ckpts/pico_model/diffusion.pt",
).cuda().eval()
self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler")
def infer(caption, runner):
with torch.no_grad():
latents = runner.picomodel.demo_inference(caption, runner.scheduler, num_steps=200, guidance=3.0, num_samples=1, audio_len=16000*10, disable_progress=True)
mel = runner.vae.decode_first_stage(latents)
wave = runner.vae.decode_to_waveform(mel)[0][:audio_len]
sf.write(f"synthesized/{caption}.wav", wave, samplerate=16000, subtype='PCM_16')
infer_runner = InferRunner()
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("## PicoAudio")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1.",
value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.")
run_button = gr.Button()
with gr.Accordion("Advanced options", open=False):
num_steps = gr.Slider(label="num_steps", minimum=1,
maximum=300, value=200, step=1)
guidance = gr.Slider(
label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1
)
with gr.Column():
outaudio = gr.Audio()
run_button.click(fn=infer, inputs=[
prompt, num_steps, guidance], outputs=[outaudio])
# with gr.Row():
# with gr.Column():
# gr.Examples(
# examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55],
# ['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55],
# ['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55],
# ['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55],
# ['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]],
# inputs = [prompt, ddim_steps, scale, seed],
# outputs = [outaudio]
# )
# with gr.Column():
# pass
demo.launch()
if __name__ == "__main__":
main()