Spaces:
Runtime error
Runtime error
File size: 15,889 Bytes
5548515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import math
import torch
from torch import nn
from torch.nn import Parameter
import torch.nn.functional as F
import numpy as np
class StyleAdaptiveLayerNorm(nn.Module):
def __init__(self, normalized_shape, eps=1e-5):
super().__init__()
self.in_dim = normalized_shape
self.norm = nn.LayerNorm(self.in_dim, eps=eps, elementwise_affine=False)
self.style = nn.Linear(self.in_dim, self.in_dim * 2)
self.style.bias.data[: self.in_dim] = 1
self.style.bias.data[self.in_dim :] = 0
def forward(self, x, condition):
# x: (B, T, d); condition: (B, T, d)
style = self.style(torch.mean(condition, dim=1, keepdim=True))
gamma, beta = style.chunk(2, -1)
out = self.norm(x)
out = gamma * out + beta
return out
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super().__init__()
self.dropout = dropout
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
)
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
def forward(self, x):
x = x + self.pe[: x.size(0)]
return F.dropout(x, self.dropout, training=self.training)
class TransformerFFNLayer(nn.Module):
def __init__(
self, encoder_hidden, conv_filter_size, conv_kernel_size, encoder_dropout
):
super().__init__()
self.encoder_hidden = encoder_hidden
self.conv_filter_size = conv_filter_size
self.conv_kernel_size = conv_kernel_size
self.encoder_dropout = encoder_dropout
self.ffn_1 = nn.Conv1d(
self.encoder_hidden,
self.conv_filter_size,
self.conv_kernel_size,
padding=self.conv_kernel_size // 2,
)
self.ffn_1.weight.data.normal_(0.0, 0.02)
self.ffn_2 = nn.Linear(self.conv_filter_size, self.encoder_hidden)
self.ffn_2.weight.data.normal_(0.0, 0.02)
def forward(self, x):
# x: (B, T, d)
x = self.ffn_1(x.permute(0, 2, 1)).permute(
0, 2, 1
) # (B, T, d) -> (B, d, T) -> (B, T, d)
x = F.relu(x)
x = F.dropout(x, self.encoder_dropout, training=self.training)
x = self.ffn_2(x)
return x
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
encoder_hidden,
encoder_head,
conv_filter_size,
conv_kernel_size,
encoder_dropout,
use_cln,
):
super().__init__()
self.encoder_hidden = encoder_hidden
self.encoder_head = encoder_head
self.conv_filter_size = conv_filter_size
self.conv_kernel_size = conv_kernel_size
self.encoder_dropout = encoder_dropout
self.use_cln = use_cln
if not self.use_cln:
self.ln_1 = nn.LayerNorm(self.encoder_hidden)
self.ln_2 = nn.LayerNorm(self.encoder_hidden)
else:
self.ln_1 = StyleAdaptiveLayerNorm(self.encoder_hidden)
self.ln_2 = StyleAdaptiveLayerNorm(self.encoder_hidden)
self.self_attn = nn.MultiheadAttention(
self.encoder_hidden, self.encoder_head, batch_first=True
)
self.ffn = TransformerFFNLayer(
self.encoder_hidden,
self.conv_filter_size,
self.conv_kernel_size,
self.encoder_dropout,
)
def forward(self, x, key_padding_mask, conditon=None):
# x: (B, T, d); key_padding_mask: (B, T), mask is 0; condition: (B, T, d)
# self attention
residual = x
if self.use_cln:
x = self.ln_1(x, conditon)
else:
x = self.ln_1(x)
if key_padding_mask != None:
key_padding_mask_input = ~(key_padding_mask.bool())
else:
key_padding_mask_input = None
x, _ = self.self_attn(
query=x, key=x, value=x, key_padding_mask=key_padding_mask_input
)
x = F.dropout(x, self.encoder_dropout, training=self.training)
x = residual + x
# ffn
residual = x
if self.use_cln:
x = self.ln_2(x, conditon)
else:
x = self.ln_2(x)
x = self.ffn(x)
x = residual + x
return x
class TransformerEncoder(nn.Module):
def __init__(
self,
enc_emb_tokens=None,
encoder_layer=None,
encoder_hidden=None,
encoder_head=None,
conv_filter_size=None,
conv_kernel_size=None,
encoder_dropout=None,
use_cln=None,
cfg=None,
):
super().__init__()
self.encoder_layer = (
encoder_layer if encoder_layer is not None else cfg.encoder_layer
)
self.encoder_hidden = (
encoder_hidden if encoder_hidden is not None else cfg.encoder_hidden
)
self.encoder_head = (
encoder_head if encoder_head is not None else cfg.encoder_head
)
self.conv_filter_size = (
conv_filter_size if conv_filter_size is not None else cfg.conv_filter_size
)
self.conv_kernel_size = (
conv_kernel_size if conv_kernel_size is not None else cfg.conv_kernel_size
)
self.encoder_dropout = (
encoder_dropout if encoder_dropout is not None else cfg.encoder_dropout
)
self.use_cln = use_cln if use_cln is not None else cfg.use_cln
if enc_emb_tokens != None:
self.use_enc_emb = True
self.enc_emb_tokens = enc_emb_tokens
else:
self.use_enc_emb = False
self.position_emb = PositionalEncoding(
self.encoder_hidden, self.encoder_dropout
)
self.layers = nn.ModuleList([])
self.layers.extend(
[
TransformerEncoderLayer(
self.encoder_hidden,
self.encoder_head,
self.conv_filter_size,
self.conv_kernel_size,
self.encoder_dropout,
self.use_cln,
)
for i in range(self.encoder_layer)
]
)
if self.use_cln:
self.last_ln = StyleAdaptiveLayerNorm(self.encoder_hidden)
else:
self.last_ln = nn.LayerNorm(self.encoder_hidden)
def forward(self, x, key_padding_mask, condition=None):
if len(x.shape) == 2 and self.use_enc_emb:
x = self.enc_emb_tokens(x)
x = self.position_emb(x)
else:
x = self.position_emb(x) # (B, T, d)
for layer in self.layers:
x = layer(x, key_padding_mask, condition)
if self.use_cln:
x = self.last_ln(x, condition)
else:
x = self.last_ln(x)
return x
class DurationPredictor(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.input_size = cfg.input_size
self.filter_size = cfg.filter_size
self.kernel_size = cfg.kernel_size
self.conv_layers = cfg.conv_layers
self.cross_attn_per_layer = cfg.cross_attn_per_layer
self.attn_head = cfg.attn_head
self.drop_out = cfg.drop_out
self.conv = nn.ModuleList()
self.cattn = nn.ModuleList()
for idx in range(self.conv_layers):
in_dim = self.input_size if idx == 0 else self.filter_size
self.conv += [
nn.Sequential(
nn.Conv1d(
in_dim,
self.filter_size,
self.kernel_size,
padding=self.kernel_size // 2,
),
nn.ReLU(),
nn.LayerNorm(self.filter_size),
nn.Dropout(self.drop_out),
)
]
if idx % self.cross_attn_per_layer == 0:
self.cattn.append(
torch.nn.Sequential(
nn.MultiheadAttention(
self.filter_size,
self.attn_head,
batch_first=True,
kdim=self.filter_size,
vdim=self.filter_size,
),
nn.LayerNorm(self.filter_size),
nn.Dropout(0.2),
)
)
self.linear = nn.Linear(self.filter_size, 1)
self.linear.weight.data.normal_(0.0, 0.02)
def forward(self, x, mask, ref_emb, ref_mask):
"""
input:
x: (B, N, d)
mask: (B, N), mask is 0
ref_emb: (B, d, T')
ref_mask: (B, T'), mask is 0
output:
dur_pred: (B, N)
dur_pred_log: (B, N)
dur_pred_round: (B, N)
"""
input_ref_mask = ~(ref_mask.bool()) # (B, T')
# print(input_ref_mask)
x = x.transpose(1, -1) # (B, N, d) -> (B, d, N)
for idx, (conv, act, ln, dropout) in enumerate(self.conv):
res = x
# print(torch.min(x), torch.max(x))
if idx % self.cross_attn_per_layer == 0:
attn_idx = idx // self.cross_attn_per_layer
attn, attn_ln, attn_drop = self.cattn[attn_idx]
attn_res = y_ = x.transpose(1, 2) # (B, d, N) -> (B, N, d)
y_ = attn_ln(y_)
# print(torch.min(y_), torch.min(y_))
# print(torch.min(ref_emb), torch.max(ref_emb))
y_, _ = attn(
y_,
ref_emb.transpose(1, 2),
ref_emb.transpose(1, 2),
key_padding_mask=input_ref_mask,
)
# y_, _ = attn(y_, ref_emb.transpose(1, 2), ref_emb.transpose(1, 2))
# print(torch.min(y_), torch.min(y_))
y_ = attn_drop(y_)
y_ = (y_ + attn_res) / math.sqrt(2.0)
x = y_.transpose(1, 2)
x = conv(x)
# print(torch.min(x), torch.max(x))
x = act(x)
x = ln(x.transpose(1, 2))
# print(torch.min(x), torch.max(x))
x = x.transpose(1, 2)
x = dropout(x)
if idx != 0:
x += res
if mask is not None:
x = x * mask.to(x.dtype)[:, None, :]
x = self.linear(x.transpose(1, 2))
x = torch.squeeze(x, -1)
dur_pred = x.exp() - 1
dur_pred_round = torch.clamp(torch.round(x.exp() - 1), min=0).long()
return {
"dur_pred_log": x,
"dur_pred": dur_pred,
"dur_pred_round": dur_pred_round,
}
class PitchPredictor(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.input_size = cfg.input_size
self.filter_size = cfg.filter_size
self.kernel_size = cfg.kernel_size
self.conv_layers = cfg.conv_layers
self.cross_attn_per_layer = cfg.cross_attn_per_layer
self.attn_head = cfg.attn_head
self.drop_out = cfg.drop_out
self.conv = nn.ModuleList()
self.cattn = nn.ModuleList()
for idx in range(self.conv_layers):
in_dim = self.input_size if idx == 0 else self.filter_size
self.conv += [
nn.Sequential(
nn.Conv1d(
in_dim,
self.filter_size,
self.kernel_size,
padding=self.kernel_size // 2,
),
nn.ReLU(),
nn.LayerNorm(self.filter_size),
nn.Dropout(self.drop_out),
)
]
if idx % self.cross_attn_per_layer == 0:
self.cattn.append(
torch.nn.Sequential(
nn.MultiheadAttention(
self.filter_size,
self.attn_head,
batch_first=True,
kdim=self.filter_size,
vdim=self.filter_size,
),
nn.LayerNorm(self.filter_size),
nn.Dropout(0.2),
)
)
self.linear = nn.Linear(self.filter_size, 1)
self.linear.weight.data.normal_(0.0, 0.02)
def forward(self, x, mask, ref_emb, ref_mask):
"""
input:
x: (B, N, d)
mask: (B, N), mask is 0
ref_emb: (B, d, T')
ref_mask: (B, T'), mask is 0
output:
pitch_pred: (B, T)
"""
input_ref_mask = ~(ref_mask.bool()) # (B, T')
x = x.transpose(1, -1) # (B, N, d) -> (B, d, N)
for idx, (conv, act, ln, dropout) in enumerate(self.conv):
res = x
if idx % self.cross_attn_per_layer == 0:
attn_idx = idx // self.cross_attn_per_layer
attn, attn_ln, attn_drop = self.cattn[attn_idx]
attn_res = y_ = x.transpose(1, 2) # (B, d, N) -> (B, N, d)
y_ = attn_ln(y_)
y_, _ = attn(
y_,
ref_emb.transpose(1, 2),
ref_emb.transpose(1, 2),
key_padding_mask=input_ref_mask,
)
# y_, _ = attn(y_, ref_emb.transpose(1, 2), ref_emb.transpose(1, 2))
y_ = attn_drop(y_)
y_ = (y_ + attn_res) / math.sqrt(2.0)
x = y_.transpose(1, 2)
x = conv(x)
x = act(x)
x = ln(x.transpose(1, 2))
x = x.transpose(1, 2)
x = dropout(x)
if idx != 0:
x += res
x = self.linear(x.transpose(1, 2))
x = torch.squeeze(x, -1)
return x
def pad(input_ele, mel_max_length=None):
if mel_max_length:
max_len = mel_max_length
else:
max_len = max([input_ele[i].size(0) for i in range(len(input_ele))])
out_list = list()
for i, batch in enumerate(input_ele):
if len(batch.shape) == 1:
one_batch_padded = F.pad(
batch, (0, max_len - batch.size(0)), "constant", 0.0
)
elif len(batch.shape) == 2:
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0
)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
class LengthRegulator(nn.Module):
"""Length Regulator"""
def __init__(self):
super(LengthRegulator, self).__init__()
def LR(self, x, duration, max_len):
device = x.device
output = list()
mel_len = list()
for batch, expand_target in zip(x, duration):
expanded = self.expand(batch, expand_target)
output.append(expanded)
mel_len.append(expanded.shape[0])
if max_len is not None:
output = pad(output, max_len)
else:
output = pad(output)
return output, torch.LongTensor(mel_len).to(device)
def expand(self, batch, predicted):
out = list()
for i, vec in enumerate(batch):
expand_size = predicted[i].item()
out.append(vec.expand(max(int(expand_size), 0), -1))
out = torch.cat(out, 0)
return out
def forward(self, x, duration, max_len):
output, mel_len = self.LR(x, duration, max_len)
return output, mel_len
|