File size: 4,459 Bytes
5548515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import json
import librosa
from tqdm import tqdm
from collections import defaultdict

from utils.util import has_existed
from preprocessors import GOLDEN_TEST_SAMPLES


def get_test_songs():
    golden_samples = GOLDEN_TEST_SAMPLES["m4singer"]
    # every item is a tuple (singer, song)
    golden_songs = [s.split("_")[:2] for s in golden_samples]
    # singer_song, eg: Alto-1_美错
    golden_songs = ["_".join(t) for t in golden_songs]
    return golden_songs


def m4singer_statistics(meta):
    singers = []
    songs = []
    singer2songs = defaultdict(lambda: defaultdict(list))
    for utt in meta:
        p, s, uid = utt["item_name"].split("#")
        singers.append(p)
        songs.append(s)
        singer2songs[p][s].append(uid)

    unique_singers = list(set(singers))
    unique_songs = list(set(songs))
    unique_singers.sort()
    unique_songs.sort()

    print(
        "M4Singer: {} singers, {} utterances ({} unique songs)".format(
            len(unique_singers), len(songs), len(unique_songs)
        )
    )
    print("Singers: \n{}".format("\t".join(unique_singers)))
    return singer2songs, unique_singers


def main(output_path, dataset_path):
    print("-" * 10)
    print("Preparing test samples for m4singer...\n")

    save_dir = os.path.join(output_path, "m4singer")
    os.makedirs(save_dir, exist_ok=True)
    train_output_file = os.path.join(save_dir, "train.json")
    test_output_file = os.path.join(save_dir, "test.json")
    singer_dict_file = os.path.join(save_dir, "singers.json")
    utt2singer_file = os.path.join(save_dir, "utt2singer")
    if (
        has_existed(train_output_file)
        and has_existed(test_output_file)
        and has_existed(singer_dict_file)
        and has_existed(utt2singer_file)
    ):
        return
    utt2singer = open(utt2singer_file, "w")

    # Load
    m4singer_dir = dataset_path
    meta_file = os.path.join(m4singer_dir, "meta.json")
    with open(meta_file, "r", encoding="utf-8") as f:
        meta = json.load(f)

    singer2songs, unique_singers = m4singer_statistics(meta)

    test_songs = get_test_songs()

    # We select songs of standard samples as test songs
    train = []
    test = []

    train_index_count = 0
    test_index_count = 0

    train_total_duration = 0
    test_total_duration = 0

    for singer, songs in tqdm(singer2songs.items()):
        song_names = list(songs.keys())

        for chosen_song in song_names:
            chosen_song = chosen_song.replace(" ", "-")
            for chosen_uid in songs[chosen_song]:
                res = {
                    "Dataset": "m4singer",
                    "Singer": singer,
                    "Song": chosen_song,
                    "Uid": "{}_{}_{}".format(singer, chosen_song, chosen_uid),
                }

                res["Path"] = os.path.join(
                    m4singer_dir, "{}#{}/{}.wav".format(singer, chosen_song, chosen_uid)
                )
                assert os.path.exists(res["Path"])

                duration = librosa.get_duration(filename=res["Path"])
                res["Duration"] = duration

                if "_".join([singer, chosen_song]) in test_songs:
                    res["index"] = test_index_count
                    test_total_duration += duration
                    test.append(res)
                    test_index_count += 1
                else:
                    res["index"] = train_index_count
                    train_total_duration += duration
                    train.append(res)
                    train_index_count += 1

                utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"]))

    print("#Train = {}, #Test = {}".format(len(train), len(test)))
    print(
        "#Train hours= {}, #Test hours= {}".format(
            train_total_duration / 3600, test_total_duration / 3600
        )
    )

    # Save train.json and test.json
    with open(train_output_file, "w") as f:
        json.dump(train, f, indent=4, ensure_ascii=False)
    with open(test_output_file, "w") as f:
        json.dump(test, f, indent=4, ensure_ascii=False)

    # Save singers.json
    singer_lut = {name: i for i, name in enumerate(unique_singers)}
    with open(singer_dict_file, "w") as f:
        json.dump(singer_lut, f, indent=4, ensure_ascii=False)