Spaces:
Sleeping
Sleeping
File size: 19,028 Bytes
0883aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# This module is modified from [Whisper](https://github.com/openai/whisper.git).
# ## Citations
# ```bibtex
# @inproceedings{openai-whisper,
# author = {Alec Radford and
# Jong Wook Kim and
# Tao Xu and
# Greg Brockman and
# Christine McLeavey and
# Ilya Sutskever},
# title = {Robust Speech Recognition via Large-Scale Weak Supervision},
# booktitle = {{ICML}},
# series = {Proceedings of Machine Learning Research},
# volume = {202},
# pages = {28492--28518},
# publisher = {{PMLR}},
# year = {2023}
# }
# ```
#
import argparse
import os
import sys
import warnings
from typing import List, Optional, Tuple, Union, TYPE_CHECKING
import numpy as np
import torch
import tqdm
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram
from .decoding import DecodingOptions, DecodingResult
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
from .utils import (
exact_div,
format_timestamp,
optional_int,
optional_float,
str2bool,
write_txt,
write_vtt,
write_srt,
)
if TYPE_CHECKING:
from .model import Whisper
def transcribe(
model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor],
*,
verbose: Optional[bool] = None,
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
compression_ratio_threshold: Optional[float] = 2.4,
logprob_threshold: Optional[float] = -1.0,
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = True,
**decode_options,
):
"""
Transcribe an audio file using Whisper
Parameters
----------
model: Whisper
The Whisper model instance
audio: Union[str, np.ndarray, torch.Tensor]
The path to the audio file to open, or the audio waveform
verbose: bool
Whether to display the text being decoded to the console. If True, displays all the details,
If False, displays minimal details. If None, does not display anything
temperature: Union[float, Tuple[float, ...]]
Temperature for sampling. It can be a tuple of temperatures, which will be successively used
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
compression_ratio_threshold: float
If the gzip compression ratio is above this value, treat as failed
logprob_threshold: float
If the average log probability over sampled tokens is below this value, treat as failed
no_speech_threshold: float
If the no_speech probability is higher than this value AND the average log probability
over sampled tokens is below `logprob_threshold`, consider the segment as silent
condition_on_previous_text: bool
if True, the previous output of the model is provided as a prompt for the next window;
disabling may make the text inconsistent across windows, but the model becomes less prone to
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
decode_options: dict
Keyword arguments to construct `DecodingOptions` instances
Returns
-------
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
"""
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
if model.device == torch.device("cpu"):
if torch.cuda.is_available():
warnings.warn("Performing inference on CPU when CUDA is available")
if dtype == torch.float16:
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
dtype = torch.float32
if dtype == torch.float32:
decode_options["fp16"] = False
mel = log_mel_spectrogram(audio)
if decode_options.get("language", None) is None:
if not model.is_multilingual:
decode_options["language"] = "en"
else:
if verbose:
print(
"Detecting language using up to the first 30 seconds. Use `--language` to specify the language"
)
segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
_, probs = model.detect_language(segment)
decode_options["language"] = max(probs, key=probs.get)
if verbose is not None:
print(
f"Detected language: {LANGUAGES[decode_options['language']].title()}"
)
language = decode_options["language"]
task = decode_options.get("task", "transcribe")
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task)
def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
temperatures = (
[temperature] if isinstance(temperature, (int, float)) else temperature
)
decode_result = None
for t in temperatures:
kwargs = {**decode_options}
if t > 0:
# disable beam_size and patience when t > 0
kwargs.pop("beam_size", None)
kwargs.pop("patience", None)
else:
# disable best_of when t == 0
kwargs.pop("best_of", None)
options = DecodingOptions(**kwargs, temperature=t)
decode_result = model.decode(segment, options)
needs_fallback = False
if (
compression_ratio_threshold is not None
and decode_result.compression_ratio > compression_ratio_threshold
):
needs_fallback = True # too repetitive
if (
logprob_threshold is not None
and decode_result.avg_logprob < logprob_threshold
):
needs_fallback = True # average log probability is too low
if not needs_fallback:
break
return decode_result
seek = 0
input_stride = exact_div(
N_FRAMES, model.dims.n_audio_ctx
) # mel frames per output token: 2
time_precision = (
input_stride * HOP_LENGTH / SAMPLE_RATE
) # time per output token: 0.02 (seconds)
all_tokens = []
all_segments = []
prompt_reset_since = 0
initial_prompt = decode_options.pop("initial_prompt", None) or []
if initial_prompt:
initial_prompt = tokenizer.encode(" " + initial_prompt.strip())
all_tokens.extend(initial_prompt)
def add_segment(
*, start: float, end: float, text_tokens: torch.Tensor, result: DecodingResult
):
text = tokenizer.decode(
[token for token in text_tokens if token < tokenizer.eot]
)
if len(text.strip()) == 0: # skip empty text output
return
all_segments.append(
{
"id": len(all_segments),
"seek": seek,
"start": start,
"end": end,
"text": text,
"tokens": text_tokens.tolist(),
"temperature": result.temperature,
"avg_logprob": result.avg_logprob,
"compression_ratio": result.compression_ratio,
"no_speech_prob": result.no_speech_prob,
}
)
if verbose:
line = f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}\n"
# compared to just `print(line)`, this replaces any character not representable using
# the system default encoding with an '?', avoiding UnicodeEncodeError.
sys.stdout.buffer.write(
line.encode(sys.getdefaultencoding(), errors="replace")
)
sys.stdout.flush()
# show the progress bar when verbose is False (otherwise the transcribed text will be printed)
num_frames = mel.shape[-1]
previous_seek_value = seek
with tqdm.tqdm(
total=num_frames, unit="frames", disable=verbose is not False
) as pbar:
while seek < num_frames:
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
segment = pad_or_trim(mel[:, seek:], N_FRAMES).to(model.device).to(dtype)
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
decode_options["prompt"] = all_tokens[prompt_reset_since:]
result: DecodingResult = decode_with_fallback(segment)
tokens = torch.tensor(result.tokens)
if no_speech_threshold is not None:
# no voice activity check
should_skip = result.no_speech_prob > no_speech_threshold
if (
logprob_threshold is not None
and result.avg_logprob > logprob_threshold
):
# don't skip if the logprob is high enough, despite the no_speech_prob
should_skip = False
if should_skip:
seek += segment.shape[
-1
] # fast-forward to the next segment boundary
continue
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[
0
].add_(1)
if (
len(consecutive) > 0
): # if the output contains two consecutive timestamp tokens
last_slice = 0
for current_slice in consecutive:
sliced_tokens = tokens[last_slice:current_slice]
start_timestamp_position = (
sliced_tokens[0].item() - tokenizer.timestamp_begin
)
end_timestamp_position = (
sliced_tokens[-1].item() - tokenizer.timestamp_begin
)
add_segment(
start=timestamp_offset
+ start_timestamp_position * time_precision,
end=timestamp_offset + end_timestamp_position * time_precision,
text_tokens=sliced_tokens[1:-1],
result=result,
)
last_slice = current_slice
last_timestamp_position = (
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
)
seek += last_timestamp_position * input_stride
all_tokens.extend(tokens[: last_slice + 1].tolist())
else:
duration = segment_duration
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
if (
len(timestamps) > 0
and timestamps[-1].item() != tokenizer.timestamp_begin
):
# no consecutive timestamps but it has a timestamp; use the last one.
# single timestamp at the end means no speech after the last timestamp.
last_timestamp_position = (
timestamps[-1].item() - tokenizer.timestamp_begin
)
duration = last_timestamp_position * time_precision
add_segment(
start=timestamp_offset,
end=timestamp_offset + duration,
text_tokens=tokens,
result=result,
)
seek += segment.shape[-1]
all_tokens.extend(tokens.tolist())
if not condition_on_previous_text or result.temperature > 0.5:
# do not feed the prompt tokens if a high temperature was used
prompt_reset_since = len(all_tokens)
# update progress bar
pbar.update(min(num_frames, seek) - previous_seek_value)
previous_seek_value = seek
return dict(
text=tokenizer.decode(all_tokens[len(initial_prompt) :]),
segments=all_segments,
language=language,
)
def cli():
from . import available_models
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"audio", nargs="+", type=str, help="audio file(s) to transcribe"
)
parser.add_argument(
"--model",
default="small",
choices=available_models(),
help="name of the Whisper model to use",
)
parser.add_argument(
"--model_dir",
type=str,
default=None,
help="the path to save model files; uses ~/.cache/whisper by default",
)
parser.add_argument(
"--device",
default="cuda" if torch.cuda.is_available() else "cpu",
help="device to use for PyTorch inference",
)
parser.add_argument(
"--output_dir",
"-o",
type=str,
default=".",
help="directory to save the outputs",
)
parser.add_argument(
"--verbose",
type=str2bool,
default=True,
help="whether to print out the progress and debug messages",
)
parser.add_argument(
"--task",
type=str,
default="transcribe",
choices=["transcribe", "translate"],
help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')",
)
parser.add_argument(
"--language",
type=str,
default=None,
choices=sorted(LANGUAGES.keys())
+ sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]),
help="language spoken in the audio, specify None to perform language detection",
)
parser.add_argument(
"--temperature", type=float, default=0, help="temperature to use for sampling"
)
parser.add_argument(
"--best_of",
type=optional_int,
default=5,
help="number of candidates when sampling with non-zero temperature",
)
parser.add_argument(
"--beam_size",
type=optional_int,
default=5,
help="number of beams in beam search, only applicable when temperature is zero",
)
parser.add_argument(
"--patience",
type=float,
default=None,
help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search",
)
parser.add_argument(
"--length_penalty",
type=float,
default=None,
help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default",
)
parser.add_argument(
"--suppress_tokens",
type=str,
default="-1",
help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations",
)
parser.add_argument(
"--initial_prompt",
type=str,
default=None,
help="optional text to provide as a prompt for the first window.",
)
parser.add_argument(
"--condition_on_previous_text",
type=str2bool,
default=True,
help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop",
)
parser.add_argument(
"--fp16",
type=str2bool,
default=True,
help="whether to perform inference in fp16; True by default",
)
parser.add_argument(
"--temperature_increment_on_fallback",
type=optional_float,
default=0.2,
help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below",
)
parser.add_argument(
"--compression_ratio_threshold",
type=optional_float,
default=2.4,
help="if the gzip compression ratio is higher than this value, treat the decoding as failed",
)
parser.add_argument(
"--logprob_threshold",
type=optional_float,
default=-1.0,
help="if the average log probability is lower than this value, treat the decoding as failed",
)
parser.add_argument(
"--no_speech_threshold",
type=optional_float,
default=0.6,
help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence",
)
parser.add_argument(
"--threads",
type=optional_int,
default=0,
help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS",
)
args = parser.parse_args().__dict__
model_name: str = args.pop("model")
model_dir: str = args.pop("model_dir")
output_dir: str = args.pop("output_dir")
device: str = args.pop("device")
os.makedirs(output_dir, exist_ok=True)
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
if args["language"] is not None:
warnings.warn(
f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead."
)
args["language"] = "en"
temperature = args.pop("temperature")
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
if temperature_increment_on_fallback is not None:
temperature = tuple(
np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)
)
else:
temperature = [temperature]
threads = args.pop("threads")
if threads > 0:
torch.set_num_threads(threads)
from . import load_model
model = load_model(model_name, device=device, download_root=model_dir)
for audio_path in args.pop("audio"):
result = transcribe(model, audio_path, temperature=temperature, **args)
audio_basename = os.path.basename(audio_path)
# save TXT
with open(
os.path.join(output_dir, audio_basename + ".txt"), "w", encoding="utf-8"
) as txt:
write_txt(result["segments"], file=txt)
# save VTT
with open(
os.path.join(output_dir, audio_basename + ".vtt"), "w", encoding="utf-8"
) as vtt:
write_vtt(result["segments"], file=vtt)
# save SRT
with open(
os.path.join(output_dir, audio_basename + ".srt"), "w", encoding="utf-8"
) as srt:
write_srt(result["segments"], file=srt)
if __name__ == "__main__":
cli()
|