Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import glob | |
import os | |
import json | |
import torchaudio | |
from tqdm import tqdm | |
from collections import defaultdict | |
from utils.io import save_audio | |
from utils.util import has_existed, remove_and_create | |
from utils.audio_slicer import Slicer | |
from preprocessors import GOLDEN_TEST_SAMPLES | |
def split_to_utterances(input_dir, output_dir): | |
print("Splitting to utterances for {}...".format(input_dir)) | |
files_list = glob.glob("*.flac", root_dir=input_dir) | |
files_list.sort() | |
for wav_file in tqdm(files_list): | |
# Load waveform | |
waveform, fs = torchaudio.load(os.path.join(input_dir, wav_file)) | |
# Song name | |
filename = wav_file.replace(" ", "") | |
filename = filename.replace("(Live)", "") | |
song_id, filename = filename.split("李健-") | |
song_id = song_id.split("_")[0] | |
song_name = "{:03d}".format(int(song_id)) + filename.split("_")[0].split("-")[0] | |
# Split | |
slicer = Slicer(sr=fs, threshold=-30.0, max_sil_kept=3000) | |
chunks = slicer.slice(waveform) | |
save_dir = os.path.join(output_dir, song_name) | |
remove_and_create(save_dir) | |
for i, chunk in enumerate(chunks): | |
output_file = os.path.join(save_dir, "{:04d}.wav".format(i)) | |
save_audio(output_file, chunk, fs) | |
def _main(dataset_path): | |
""" | |
Split to utterances | |
""" | |
utterance_dir = os.path.join(dataset_path, "utterances") | |
split_to_utterances(os.path.join(dataset_path, "vocal_v2"), utterance_dir) | |
def get_test_songs(): | |
golden_samples = GOLDEN_TEST_SAMPLES["lijian"] | |
golden_songs = [s.split("_")[0] for s in golden_samples] | |
return golden_songs | |
def statistics(utt_dir): | |
song2utts = defaultdict(list) | |
song_infos = glob.glob(utt_dir + "/*") | |
song_infos.sort() | |
for song in song_infos: | |
song_name = song.split("/")[-1] | |
utt_infos = glob.glob(song + "/*.wav") | |
utt_infos.sort() | |
for utt in utt_infos: | |
uid = utt.split("/")[-1].split(".")[0] | |
song2utts[song_name].append(uid) | |
utt_sum = sum([len(utts) for utts in song2utts.values()]) | |
print("Li Jian: {} unique songs, {} utterances".format(len(song2utts), utt_sum)) | |
return song2utts | |
def main(output_path, dataset_path): | |
print("-" * 10) | |
print("Preparing test samples for Li Jian...\n") | |
if not os.path.exists(os.path.join(dataset_path, "utterances")): | |
print("Spliting into utterances...\n") | |
_main(dataset_path) | |
save_dir = os.path.join(output_path, "lijian") | |
train_output_file = os.path.join(save_dir, "train.json") | |
test_output_file = os.path.join(save_dir, "test.json") | |
if has_existed(test_output_file): | |
return | |
# Load | |
lijian_path = os.path.join(dataset_path, "utterances") | |
song2utts = statistics(lijian_path) | |
test_songs = get_test_songs() | |
# We select songs of standard samples as test songs | |
train = [] | |
test = [] | |
train_index_count = 0 | |
test_index_count = 0 | |
train_total_duration = 0 | |
test_total_duration = 0 | |
for chosen_song, utts in tqdm(song2utts.items()): | |
for chosen_uid in song2utts[chosen_song]: | |
res = { | |
"Dataset": "lijian", | |
"Singer": "lijian", | |
"Uid": "{}_{}".format(chosen_song, chosen_uid), | |
} | |
res["Path"] = "{}/{}.wav".format(chosen_song, chosen_uid) | |
res["Path"] = os.path.join(lijian_path, res["Path"]) | |
assert os.path.exists(res["Path"]) | |
waveform, sample_rate = torchaudio.load(res["Path"]) | |
duration = waveform.size(-1) / sample_rate | |
res["Duration"] = duration | |
if duration <= 1e-8: | |
continue | |
if chosen_song in test_songs: | |
res["index"] = test_index_count | |
test_total_duration += duration | |
test.append(res) | |
test_index_count += 1 | |
else: | |
res["index"] = train_index_count | |
train_total_duration += duration | |
train.append(res) | |
train_index_count += 1 | |
print("#Train = {}, #Test = {}".format(len(train), len(test))) | |
print( | |
"#Train hours= {}, #Test hours= {}".format( | |
train_total_duration / 3600, test_total_duration / 3600 | |
) | |
) | |
# Save | |
os.makedirs(save_dir, exist_ok=True) | |
with open(train_output_file, "w") as f: | |
json.dump(train, f, indent=4, ensure_ascii=False) | |
with open(test_output_file, "w") as f: | |
json.dump(test, f, indent=4, ensure_ascii=False) | |