Spaces:
Sleeping
Sleeping
mj-new
commited on
Commit
•
0147fc2
1
Parent(s):
0587641
working audio file saving
Browse files- .gitignore +2 -0
- Temp.mp3 +0 -0
- app.py +159 -34
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
.python-version
|
|
|
|
|
|
1 |
.python-version
|
2 |
+
data_local
|
3 |
+
run.sh
|
Temp.mp3
ADDED
Binary file (39.6 kB). View file
|
|
app.py
CHANGED
@@ -2,6 +2,21 @@ import gradio as gr
|
|
2 |
import whisper
|
3 |
import numpy as np
|
4 |
import openai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def greet(name):
|
7 |
return "Hello " + name + "!!"
|
@@ -12,23 +27,118 @@ with open('app.css','r') as f:
|
|
12 |
markdown="""
|
13 |
# Polish ASR BIGOS workspace
|
14 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def whisper_model_change(radio_whisper_model):
|
16 |
whisper_model = whisper.load_model(radio_whisper_model)
|
17 |
return(whisper_model)
|
18 |
|
19 |
-
def prompt_gpt(input_text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
messages = [
|
21 |
-
{"role": "system", "content":
|
22 |
|
23 |
if input_text:
|
24 |
messages.append(
|
25 |
{"role": "user", "content": input_text},
|
26 |
)
|
|
|
27 |
chat_completion = openai.ChatCompletion.create(
|
28 |
-
model="gpt-3.5-turbo",
|
|
|
|
|
29 |
)
|
30 |
|
31 |
reply = chat_completion.choices[0].message.content
|
|
|
32 |
return reply
|
33 |
|
34 |
def process_pipeline(audio):
|
@@ -58,9 +168,9 @@ def init_whisper_model(whisper_model_type):
|
|
58 |
whisper_model = whisper.load_model(whisper_model_type)
|
59 |
return whisper_model
|
60 |
|
61 |
-
def synthesize_speech(text):
|
62 |
-
audioobj = gTTS(text =
|
63 |
-
lang =
|
64 |
slow = False)
|
65 |
|
66 |
audioobj.save("Temp.mp3")
|
@@ -71,8 +181,11 @@ with block:
|
|
71 |
|
72 |
#state variables
|
73 |
language = gr.State("en")
|
|
|
74 |
whisper_model_type = gr.State("base")
|
75 |
whisper_model = gr.State()
|
|
|
|
|
76 |
|
77 |
# state handling functions
|
78 |
def change_language(choice):
|
@@ -96,36 +209,48 @@ with block:
|
|
96 |
return [whisper_model_type, whisper_model]
|
97 |
|
98 |
gr.Markdown(markdown)
|
|
|
99 |
with gr.Tabs():
|
100 |
-
with gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
with gr.Box():
|
102 |
-
gr.
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
|
131 |
block.launch()
|
|
|
2 |
import whisper
|
3 |
import numpy as np
|
4 |
import openai
|
5 |
+
import os
|
6 |
+
from gtts import gTTS
|
7 |
+
import json
|
8 |
+
import hashlib
|
9 |
+
import random
|
10 |
+
import string
|
11 |
+
import uuid
|
12 |
+
from datetime import date,datetime
|
13 |
+
from huggingface_hub import Repository, upload_file
|
14 |
+
import shutil
|
15 |
+
|
16 |
+
HF_TOKEN_WRITE = os.environ.get("HF_TOKEN_WRITE")
|
17 |
+
print("HF_TOKEN_WRITE", HF_TOKEN_WRITE)
|
18 |
+
today = date.today()
|
19 |
+
today_ymd = today.strftime("%Y%m%d")
|
20 |
|
21 |
def greet(name):
|
22 |
return "Hello " + name + "!!"
|
|
|
27 |
markdown="""
|
28 |
# Polish ASR BIGOS workspace
|
29 |
"""
|
30 |
+
|
31 |
+
# TODO move to config
|
32 |
+
WORKING_DATASET_REPO_URL = "https://huggingface.co/datasets/goodmike31/working-db"
|
33 |
+
REPO_NAME = "goodmike31/working-db"
|
34 |
+
REPOSITORY_DIR = "data"
|
35 |
+
LOCAL_DIR = "data_local"
|
36 |
+
os.makedirs(LOCAL_DIR,exist_ok=True)
|
37 |
+
|
38 |
+
def dump_json(thing,file):
|
39 |
+
with open(file,'w+',encoding="utf8") as f:
|
40 |
+
json.dump(thing,f)
|
41 |
+
|
42 |
+
def get_unique_name():
|
43 |
+
return ''.join([random.choice(string.ascii_letters
|
44 |
+
+ string.digits) for n in range(32)])
|
45 |
+
|
46 |
+
def save_recording_and_meta(project_name, recording, transcript, language):
|
47 |
+
#, name, age, gender):
|
48 |
+
# TODO save user data in the next version
|
49 |
+
|
50 |
+
speaker_metadata={}
|
51 |
+
speaker_metadata['gender'] = "test" #gender if gender!=GENDER[0] else ''
|
52 |
+
speaker_metadata['age'] = "test" #age if age !='' else ''
|
53 |
+
speaker_metadata['accent'] = "test" #accent if accent!='' else ''
|
54 |
+
|
55 |
+
lang_id = language.lower()
|
56 |
+
|
57 |
+
# TODO get ISO-693-1 codes
|
58 |
+
transcript =transcript.strip()
|
59 |
+
|
60 |
+
SAVE_ROOT_DIR = os.path.join(LOCAL_DIR, project_name, today_ymd)
|
61 |
+
|
62 |
+
SAVE_DIR_AUDIO = os.path.join(SAVE_ROOT_DIR, "audio")
|
63 |
+
SAVE_DIR_META = os.path.join(SAVE_ROOT_DIR, "meta")
|
64 |
+
os.makedirs(SAVE_DIR_AUDIO, exist_ok=True)
|
65 |
+
os.makedirs(SAVE_DIR_META, exist_ok=True)
|
66 |
+
|
67 |
+
# Write audio to file
|
68 |
+
#audio_name = get_unique_name()
|
69 |
+
|
70 |
+
uuid_name = str(uuid.uuid4())
|
71 |
+
audio_fn = uuid_name + ".wav"
|
72 |
+
audio_output_fp = os.path.join(SAVE_DIR_AUDIO, audio_fn)
|
73 |
+
|
74 |
+
print (f"Saving {recording} as {audio_output_fp}")
|
75 |
+
shutil.copy2(recording, audio_output_fp)
|
76 |
+
|
77 |
+
# Write metadata.json to file
|
78 |
+
meta_fn = uuid_name + 'metadata.jsonl'
|
79 |
+
json_file_path = os.path.join(SAVE_DIR_META, meta_fn)
|
80 |
+
|
81 |
+
now = datetime.now()
|
82 |
+
timestamp_str = now.strftime("%d/%m/%Y %H:%M:%S")
|
83 |
+
metadata= {'id':uuid_name,'audio_file': audio_fn,
|
84 |
+
'language_name':language,'language_id':lang_id,
|
85 |
+
'transcript':transcript,'age': speaker_metadata['age'],
|
86 |
+
'gender': speaker_metadata['gender'],'accent': speaker_metadata['accent'],
|
87 |
+
"date":today_ymd, "timestamp": timestamp_str }
|
88 |
+
|
89 |
+
dump_json(metadata, json_file_path)
|
90 |
+
|
91 |
+
# Simply upload the audio file and metadata using the hub's upload_file
|
92 |
+
# Upload the audio
|
93 |
+
repo_audio_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "audio", audio_fn)
|
94 |
+
|
95 |
+
_ = upload_file(path_or_fileobj = audio_output_fp,
|
96 |
+
path_in_repo = repo_audio_path,
|
97 |
+
repo_id = REPO_NAME,
|
98 |
+
repo_type = 'dataset',
|
99 |
+
token = HF_TOKEN_WRITE
|
100 |
+
)
|
101 |
+
|
102 |
+
# Upload the metadata
|
103 |
+
repo_json_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "meta", meta_fn)
|
104 |
+
_ = upload_file(path_or_fileobj = json_file_path,
|
105 |
+
path_in_repo = repo_json_path,
|
106 |
+
repo_id = REPO_NAME,
|
107 |
+
repo_type = 'dataset',
|
108 |
+
token = HF_TOKEN_WRITE
|
109 |
+
)
|
110 |
+
|
111 |
+
output = print(f"Recording {audio_fn} and meta file {meta_fn} successfully saved to repo!")
|
112 |
+
return
|
113 |
+
|
114 |
def whisper_model_change(radio_whisper_model):
|
115 |
whisper_model = whisper.load_model(radio_whisper_model)
|
116 |
return(whisper_model)
|
117 |
|
118 |
+
def prompt_gpt(input_text, api_key, temperature):
|
119 |
+
#, role, template_prompt, template_answer):
|
120 |
+
#TODO add option to specify instruction
|
121 |
+
openai.api_key = api_key
|
122 |
+
|
123 |
+
#TODO add specific message for specific role
|
124 |
+
system_role_message="You are a helpful assistant"
|
125 |
+
|
126 |
messages = [
|
127 |
+
{"role": "system", "content": system_role_message}]
|
128 |
|
129 |
if input_text:
|
130 |
messages.append(
|
131 |
{"role": "user", "content": input_text},
|
132 |
)
|
133 |
+
|
134 |
chat_completion = openai.ChatCompletion.create(
|
135 |
+
model="gpt-3.5-turbo",
|
136 |
+
messages=messages,
|
137 |
+
temperature=temperature
|
138 |
)
|
139 |
|
140 |
reply = chat_completion.choices[0].message.content
|
141 |
+
#TODO save chat completion for future reuse
|
142 |
return reply
|
143 |
|
144 |
def process_pipeline(audio):
|
|
|
168 |
whisper_model = whisper.load_model(whisper_model_type)
|
169 |
return whisper_model
|
170 |
|
171 |
+
def synthesize_speech(text, language):
|
172 |
+
audioobj = gTTS(text = text,
|
173 |
+
lang = language,
|
174 |
slow = False)
|
175 |
|
176 |
audioobj.save("Temp.mp3")
|
|
|
181 |
|
182 |
#state variables
|
183 |
language = gr.State("en")
|
184 |
+
temperature = gr.State(0)
|
185 |
whisper_model_type = gr.State("base")
|
186 |
whisper_model = gr.State()
|
187 |
+
api_key = gr.State()
|
188 |
+
project_name = gr.State("voicebot") # TODO add list of projects to organize saved data
|
189 |
|
190 |
# state handling functions
|
191 |
def change_language(choice):
|
|
|
209 |
return [whisper_model_type, whisper_model]
|
210 |
|
211 |
gr.Markdown(markdown)
|
212 |
+
|
213 |
with gr.Tabs():
|
214 |
+
with gr.Row():
|
215 |
+
with gr.TabItem('Voicebot playground'):
|
216 |
+
with gr.Accordion(label="Settings"):
|
217 |
+
gr.HTML("<p class=\"apikey\">Open AI API Key:</p>")
|
218 |
+
# API key textbox (password-style)
|
219 |
+
api_key = gr.Textbox(label="", elem_id="pw")
|
220 |
+
slider_temp = gr.Slider(minimum=0, maximum= 2, step=0.2, label="ChatGPT temperature")
|
221 |
+
radio_lang = gr.Radio(["Polish", "English"], label="Language", info="If none selected, English is used")
|
222 |
+
#radio_asr_type = gr.Radio(["Local", "Cloud"], label="Select ASR type", info="Cloud models are faster and more accurate, but costs money")
|
223 |
+
#radio_cloud_asr = gr.Radio(["Whisper", "Google", "Azure"], label="Select Cloud ASR provider", info="You need to provide API keys for specific service")
|
224 |
+
radio_whisper_model = gr.Radio(["tiny", "base", "small", "medium", "large"], label="Whisper ASR model (local)", info="Larger models are more accurate, but slower. Default - base")
|
225 |
with gr.Box():
|
226 |
+
with gr.Row():
|
227 |
+
mic_recording = gr.Audio(source="microphone", type="filepath", label='Record your voice')
|
228 |
+
|
229 |
+
button_transcribe = gr.Button("Transcribe speech")
|
230 |
+
|
231 |
+
button_save_audio_and_trans = gr.Button("Save recording and meta")
|
232 |
+
|
233 |
+
out_asr = gr.Textbox(placeholder="ASR output",
|
234 |
+
lines=2,
|
235 |
+
max_lines=5,
|
236 |
+
show_label=False)
|
237 |
+
|
238 |
+
button_prompt_gpt = gr.Button("Prompt ChatGPT")
|
239 |
+
|
240 |
+
out_gpt = gr.Textbox(placeholder="ChatGPT output",
|
241 |
+
lines=4,
|
242 |
+
max_lines=10,
|
243 |
+
show_label=False)
|
244 |
+
button_synth_speech = gr.Button("Synthesize speech")
|
245 |
+
synth_recording = gr.Audio()
|
246 |
+
|
247 |
+
# Events actions
|
248 |
+
button_save_audio_and_trans.click(save_recording_and_meta, inputs=[project_name, mic_recording, out_asr, language], outputs=[])
|
249 |
+
button_transcribe.click(transcribe, inputs=[mic_recording, language, whisper_model,whisper_model_type], outputs=out_asr)
|
250 |
+
button_prompt_gpt.click(prompt_gpt, inputs=[out_asr, api_key, slider_temp], outputs=out_gpt)
|
251 |
+
button_synth_speech.click(synthesize_speech, inputs=[out_gpt, language], outputs=synth_recording)
|
252 |
|
253 |
+
radio_lang.change(fn=change_language, inputs=radio_lang, outputs=language)
|
254 |
+
radio_whisper_model.change(fn=change_whisper_model, inputs=radio_whisper_model, outputs=[whisper_model_type, whisper_model])
|
255 |
|
256 |
block.launch()
|