|
import os |
|
import time |
|
import streamlit as st |
|
import subprocess |
|
import sys |
|
import logging |
|
import pandas as pd |
|
from json import JSONDecodeError |
|
from pathlib import Path |
|
from markdown import markdown |
|
import random |
|
from typing import List, Dict, Any, Tuple |
|
|
|
from haystack.document_stores import ElasticsearchDocumentStore, FAISSDocumentStore |
|
from haystack.nodes import EmbeddingRetriever |
|
from haystack.pipelines import ExtractiveQAPipeline |
|
from haystack.preprocessor.preprocessor import PreProcessor |
|
from haystack.nodes import FARMReader, TransformersReader |
|
from haystack.pipelines import ExtractiveQAPipeline |
|
from annotated_text import annotation |
|
import shutil |
|
|
|
|
|
INDEX_DIR = './data/index' |
|
|
|
|
|
|
|
@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None}, allow_output_mutation=True) |
|
def start_haystack(): |
|
""" |
|
load document store, retriever, reader and create pipeline |
|
""" |
|
|
|
document_store = FAISSDocumentStore( |
|
sql_url=f'sqlite:///{INDEX_DIR}/faiss_document_store.db' |
|
faiss_index_path=f'{INDEX_DIR}/my_faiss_index.faiss', |
|
faiss_config_path=f'{INDEX_DIR}/my_faiss_index.json') |
|
print (f'Index size: {document_store.get_document_count()}') |
|
retriever = EmbeddingRetriever( |
|
document_store=document_store, |
|
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1", |
|
model_format="sentence_transformers" |
|
) |
|
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True) |
|
pipe = ExtractiveQAPipeline(reader, retriever) |
|
return pipe |
|
|
|
def set_state_if_absent(key, value): |
|
if key not in st.session_state: |
|
st.session_state[key] = value |
|
|
|
def get_backlink(result, ip) -> str: |
|
""" |
|
Build URL from metadata and Google VM IP |
|
(quick and dirty) |
|
""" |
|
meta = result['meta'] |
|
fpath = meta['filepath'].rpartition('/')[-1] |
|
fname = fpath.rpartition('.')[0] |
|
return f'http://{ip}:8000/data/final/ner_html/{fname}.html' |
|
|
|
|
|
def query(pipe, question): |
|
"""Run query and get answers""" |
|
return (pipe.run(question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}), None) |
|
|
|
def main(): |
|
pipe=start_haystack() |
|
my_ip=subprocess.run(['curl', 'ifconfig.me'], stdout=subprocess.PIPE).stdout.decode('utf-8') |
|
|
|
|
|
set_state_if_absent('question', "") |
|
set_state_if_absent('answer', '') |
|
set_state_if_absent('results', None) |
|
set_state_if_absent('raw_json', None) |
|
set_state_if_absent('random_question_requested', False) |
|
|
|
|
|
def reset_results(*args): |
|
st.session_state.answer = None |
|
st.session_state.results = None |
|
st.session_state.raw_json = None |
|
|
|
|
|
st.write("# Question answering engine") |
|
|
|
st.markdown("""<br/> |
|
Ask any question and see if the system can find the correct answer to your query! |
|
|
|
*Note: do not use keywords, but full-fledged questions.* |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
question = st.text_input("", |
|
value=st.session_state.question, |
|
max_chars=100, |
|
|
|
) |
|
col1, col2 = st.columns(2) |
|
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) |
|
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) |
|
|
|
|
|
run_pressed = col1.button("Run") |
|
|
|
run_query = (run_pressed or question != st.session_state.question) and not st.session_state.random_question_requested |
|
|
|
|
|
if run_query and question: |
|
reset_results() |
|
st.session_state.question = question |
|
|
|
with st.spinner( |
|
"π§ Performing neural search on documents..." |
|
|
|
): |
|
try: |
|
st.session_state.results, st.session_state.raw_json = query(pipe, question) |
|
except JSONDecodeError as je: |
|
st.error("π An error occurred reading the results. Is the document store working?") |
|
return |
|
except Exception as e: |
|
logging.exception(e) |
|
if "The server is busy processing requests" in str(e) or "503" in str(e): |
|
st.error("π§βπΎ All our workers are busy! Try again later.") |
|
else: |
|
st.error("π An error occurred during the request.") |
|
return |
|
|
|
if st.session_state.results: |
|
st.write("## Results:") |
|
|
|
alert_irrelevance=True |
|
|
|
for count, result in enumerate(st.session_state.results['answers']): |
|
result=result.to_dict() |
|
if result["answer"]: |
|
if alert_irrelevance and result['score']<=0.40: |
|
alert_irrelevance = False |
|
st.write("<h3 style='color: red'>Attention, the following answers have low relevance:</h3>", unsafe_allow_html=True) |
|
|
|
answer, context = result["answer"], result["context"] |
|
|
|
start_idx = context.find(answer) |
|
end_idx = start_idx + len(answer) |
|
|
|
|
|
st.write(markdown("- ..."+context[:start_idx] + str(annotation(answer, "ANSWER", "#8ef")) + context[end_idx:]+"..."), unsafe_allow_html=True) |
|
|
|
|
|
|
|
main() |
|
|