Add model
Browse files- QuijoBERT/config.json +27 -0
- QuijoBERT/merges.txt +0 -0
- QuijoBERT/pytorch_model.bin +3 -0
- QuijoBERT/training_args.bin +3 -0
- QuijoBERT/vocab.json +0 -0
- app.py +39 -3
- el_quijote.txt +0 -0
- quijoBERT.py +113 -0
QuijoBERT/config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./QuijoBERT/backup",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.19.0.dev0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50000
|
27 |
+
}
|
QuijoBERT/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
QuijoBERT/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65f7722ec4294cf9c4a092995573924d30d0a0a268b7e4db0c41a4ff2564b1c7
|
3 |
+
size 327904939
|
QuijoBERT/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c49120b72a0cb08b7a726d09864a5baba0e888193c56ff53895d356cc6cc501a
|
3 |
+
size 3119
|
QuijoBERT/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
CHANGED
@@ -1,7 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
iface.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
|
3 |
+
# def greet(name):
|
4 |
+
# return "Hello Mr." + name + "!!"
|
5 |
+
|
6 |
+
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
+
# iface.launch()
|
8 |
+
|
9 |
+
|
10 |
import gradio as gr
|
11 |
+
from numpy import kaiser
|
12 |
+
|
13 |
+
from transformers import pipeline
|
14 |
+
|
15 |
+
fill_mask = pipeline("fill-mask", model="./QuijoBERT", tokenizer = './QuijoBERT')
|
16 |
+
|
17 |
+
def predict(text):
|
18 |
+
|
19 |
+
res_dict = {}
|
20 |
+
x = fill_mask(text)
|
21 |
+
print('x')
|
22 |
+
for i in range(len(x)):
|
23 |
+
k = x[i]['sequence']
|
24 |
+
e = x[i]['score']
|
25 |
+
print(k, e)
|
26 |
+
if e >= 0.05:
|
27 |
+
res_dict[k] = e
|
28 |
+
print (res_dict)
|
29 |
+
return res_dict
|
30 |
+
#return {x[0]["sequence"], x[0]["score"]}
|
31 |
+
|
32 |
+
# texto = 'en un lugar de la <mask>'
|
33 |
+
# print(predict(texto))
|
34 |
+
|
35 |
+
iface = gr.Interface(
|
36 |
+
fn=predict,
|
37 |
+
inputs='text',
|
38 |
+
outputs ='label',
|
39 |
+
examples=['En un lugar de la <mask>', 'En verdad, <mask> Sancho', 'Cómo has estado, bien mío, <mask> de mis ojos, compañero mío']
|
40 |
+
)
|
41 |
|
|
|
|
|
42 |
|
|
|
43 |
iface.launch()
|
el_quijote.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
quijoBERT.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, RobertaConfig , RobertaTokenizer,RobertaForMaskedLM, DataCollatorForLanguageModeling, LineByLineTextDataset, Trainer, TrainingArguments
|
4 |
+
|
5 |
+
|
6 |
+
from pathlib import Path
|
7 |
+
from tokenizers import ByteLevelBPETokenizer
|
8 |
+
from tokenizers.implementations import ByteLevelBPETokenizer
|
9 |
+
from tokenizers.processors import BertProcessing
|
10 |
+
import torch
|
11 |
+
from torchinfo import summary
|
12 |
+
|
13 |
+
|
14 |
+
import os
|
15 |
+
|
16 |
+
paths = [str(x) for x in Path(".").glob("**/el_*.txt")]
|
17 |
+
print(paths)
|
18 |
+
# Initialize a tokenizer
|
19 |
+
tokenizer = ByteLevelBPETokenizer()
|
20 |
+
# Customize training
|
21 |
+
tokenizer.train(files=paths, vocab_size=52_000, min_frequency=2,
|
22 |
+
special_tokens=[
|
23 |
+
"<s>",
|
24 |
+
"<pad>",
|
25 |
+
"</s>",
|
26 |
+
"<unk>",
|
27 |
+
"<mask>",
|
28 |
+
])
|
29 |
+
|
30 |
+
|
31 |
+
dir_path = os.getcwd()
|
32 |
+
token_dir = os.path.join(dir_path, 'QuijoBERT')
|
33 |
+
|
34 |
+
if not os.path.exists(token_dir):
|
35 |
+
os.makedirs(token_dir)
|
36 |
+
tokenizer.save_model('QuijoBERT')
|
37 |
+
|
38 |
+
tokenizer = ByteLevelBPETokenizer(
|
39 |
+
"./QuijoBERT/vocab.json",
|
40 |
+
"./QuijoBERT/merges.txt",
|
41 |
+
)
|
42 |
+
|
43 |
+
tokenizer._tokenizer.post_processor = BertProcessing(
|
44 |
+
("</s>", tokenizer.token_to_id("</s>")),
|
45 |
+
("<s>", tokenizer.token_to_id("<s>")),
|
46 |
+
)
|
47 |
+
tokenizer.enable_truncation(max_length=512)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
config = RobertaConfig(
|
52 |
+
vocab_size=52_000,
|
53 |
+
max_position_embeddings=514,
|
54 |
+
num_attention_heads=12,
|
55 |
+
num_hidden_layers=6,
|
56 |
+
type_vocab_size=1,
|
57 |
+
)
|
58 |
+
|
59 |
+
"""# Step 8: Re-creating the Tokenizer in Transformers"""
|
60 |
+
|
61 |
+
tokenizer = RobertaTokenizer.from_pretrained("./QuijoBERT", max_length=512)
|
62 |
+
|
63 |
+
#Initializing a Model
|
64 |
+
|
65 |
+
model = RobertaForMaskedLM(config=config)
|
66 |
+
#In case we want to recover the after a crash
|
67 |
+
#model = RobertaForMaskedLM.from_pretrained("./QuijoBERT/Checkpoint-xxxxx")
|
68 |
+
|
69 |
+
|
70 |
+
#Tensorflow
|
71 |
+
print(model)
|
72 |
+
#Pytorch
|
73 |
+
summary(model)
|
74 |
+
|
75 |
+
|
76 |
+
dataset = LineByLineTextDataset(
|
77 |
+
tokenizer=tokenizer,
|
78 |
+
file_path="./el_quijote.txt",
|
79 |
+
block_size=128,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
#Defining a Data Collator
|
84 |
+
|
85 |
+
data_collator = DataCollatorForLanguageModeling(
|
86 |
+
tokenizer=tokenizer, mlm=True, mlm_probability=0.15
|
87 |
+
)
|
88 |
+
|
89 |
+
# Initializing the Trainer Object
|
90 |
+
training_args = TrainingArguments(
|
91 |
+
output_dir="./QuijoBERT",
|
92 |
+
overwrite_output_dir=True,
|
93 |
+
num_train_epochs=1,
|
94 |
+
per_device_train_batch_size=64,
|
95 |
+
save_steps=1000,
|
96 |
+
save_total_limit=2,
|
97 |
+
)
|
98 |
+
trainer = Trainer(
|
99 |
+
model=model,
|
100 |
+
args=training_args,
|
101 |
+
data_collator=data_collator,
|
102 |
+
train_dataset=dataset,
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
#Training the Model
|
107 |
+
print('aqui')
|
108 |
+
trainer.train()
|
109 |
+
trainer.save_model("./QuijoBERT")
|
110 |
+
|
111 |
+
#Saving the Final Model(+tokenizer + config) to disk
|
112 |
+
trainer.save_model("./QuijoBERT")
|
113 |
+
|