# import gradio as gr # def greet(name): # return "Hello Mr." + name + "!!" # iface = gr.Interface(fn=greet, inputs="text", outputs="text") # iface.launch() import gradio as gr from numpy import kaiser from transformers import pipeline fill_mask = pipeline("fill-mask", model="./QuijoBERT", tokenizer = './QuijoBERT') def predict(text): res_dict = {} x = fill_mask(text) print('x') for i in range(len(x)): k = x[i]['sequence'] e = x[i]['score'] print(k, e) if e >= 0.05: res_dict[k] = e print (res_dict) return res_dict #return {x[0]["sequence"], x[0]["score"]} # texto = 'en un lugar de la ' # print(predict(texto)) iface = gr.Interface( fn=predict, inputs='text', outputs ='label', examples=['En un lugar de la ', 'En verdad, Sancho', 'Cómo has estado, bien mío, de mis ojos, compañero mío'] ) iface.launch()