Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,574 Bytes
ade70cf 1d51385 ade70cf 1d51385 ade70cf 1d51385 39ae23a ade70cf 1d51385 ade70cf 1d51385 ade70cf 1d51385 ade70cf 1d51385 ade70cf 1d51385 ade70cf 1d51385 ade70cf 1d51385 ade70cf 1d51385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import requests
import copy
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import random
import numpy as np
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
model_id = 'microsoft/Florence-2-large'
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval()
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
def run_example(task_prompt, image, text_input=None):
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
def plot_bbox(image, data):
fig, ax = plt.subplots()
ax.imshow(image)
for bbox, label in zip(data['bboxes'], data['labels']):
x1, y1, x2, y2 = bbox
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
ax.axis('off')
return fig
def draw_polygons(image, prediction, fill_mask=False):
draw = ImageDraw.Draw(image)
scale = 1
for polygons, label in zip(prediction['polygons'], prediction['labels']):
color = random.choice(colormap)
fill_color = random.choice(colormap) if fill_mask else None
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = (_polygon * scale).reshape(-1).tolist()
if fill_mask:
draw.polygon(_polygon, outline=color, fill=fill_color)
else:
draw.polygon(_polygon, outline=color)
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
return image
def convert_to_od_format(data):
bboxes = data.get('bboxes', [])
labels = data.get('bboxes_labels', [])
od_results = {
'bboxes': bboxes,
'labels': labels
}
return od_results
def draw_ocr_bboxes(image, prediction):
scale = 1
draw = ImageDraw.Draw(image)
bboxes, labels = prediction['quad_boxes'], prediction['labels']
for box, label in zip(bboxes, labels):
color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
draw.polygon(new_box, width=3, outline=color)
draw.text((new_box[0]+8, new_box[1]+2),
"{}".format(label),
align="right",
fill=color)
return image
def process_image(image, task_prompt, text_input=None):
if task_prompt == '<CAPTION>':
result = run_example(task_prompt, image)
return result
elif task_prompt == '<DETAILED_CAPTION>':
result = run_example(task_prompt, image)
return result
elif task_prompt == '<MORE_DETAILED_CAPTION>':
result = run_example(task_prompt, image)
return result
elif task_prompt == '<OD>':
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<OD>'])
return fig
elif task_prompt == '<DENSE_REGION_CAPTION>':
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
return fig
elif task_prompt == '<REGION_PROPOSAL>':
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
return fig
elif task_prompt == '<CAPTION_TO_PHRASE_GROUNDING>':
results = run_example(task_prompt, image, text_input)
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
return fig
elif task_prompt == '<REFERRING_EXPRESSION_SEGMENTATION>':
results = run_example(task_prompt, image, text_input)
output_image = copy.deepcopy(image)
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
return output_image
elif task_prompt == '<REGION_TO_SEGMENTATION>':
results = run_example(task_prompt, image, text_input)
output_image = copy.deepcopy(image)
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
return output_image
elif task_prompt == '<OPEN_VOCABULARY_DETECTION>':
results = run_example(task_prompt, image, text_input)
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
fig = plot_bbox(image, bbox_results)
return fig
elif task_prompt == '<REGION_TO_CATEGORY>':
results = run_example(task_prompt, image, text_input)
return results
elif task_prompt == '<REGION_TO_DESCRIPTION>':
results = run_example(task_prompt, image, text_input)
return results
elif task_prompt == '<OCR>':
result = run_example(task_prompt, image)
return result
elif task_prompt == '<OCR_WITH_REGION>':
results = run_example(task_prompt, image)
output_image = copy.deepcopy(image)
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
return output_image
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Florence-2 Demo<center><h1>")
with gr.Tab(label="Florence-2 Image Captioning"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
task_prompt = gr.Dropdown(choices=[
'<CAPTION>', '<DETAILED_CAPTION>', '<MORE_DETAILED_CAPTION>', '<OD>',
'<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>', '<CAPTION_TO_PHRASE_GROUNDING>',
'<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>',
'<OPEN_VOCABULARY_DETECTION>', '<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>',
'<OCR>', '<OCR_WITH_REGION>'
], label="Task Prompt")
text_input = gr.Textbox(label="Text Input (optional)")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
output_img = gr.Image(label="Output Image")
gr.Examples(
examples=[
["image1.jpg", '<CAPTION>'],
["image1.jpg", '<OD>'],
["image1.jpg", '<OCR_WITH_REGION>']
],
inputs=[input_img, task_prompt],
outputs=[output_text, output_img],
fn=process_image,
cache_examples=True,
label='Try examples'
)
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
demo.launch(debug=True) |