Spaces:
Paused
Paused
File size: 2,806 Bytes
7edda8b 2bede7c 7edda8b 2bede7c 7edda8b 2bede7c 7edda8b 2bede7c 7edda8b 7cd57ad 2bede7c 7edda8b 2bede7c 7cd57ad 2bede7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import shutil
import subprocess
import gradio as gr
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
api = HfApi()
def process_model(model_id, q_method, username, hf_token):
MODEL_NAME = model_id.split('/')[-1]
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False)
print("Model downloaded successully!")
fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}"
subprocess.run(fp16_conversion, shell=True)
print("Model converted to fp16 successully!")
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf"
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
subprocess.run(quantise_ggml, shell=True)
print("Quantised successfully!")
# Create empty repo
repo_url = create_repo(
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF",
repo_type="model",
exist_ok=True,
token=hf_token
)
print("Empty repo created successfully!")
# Upload gguf files
api.upload_folder(
folder_path=MODEL_NAME,
repo_id=f"{username}/{MODEL_NAME}-{q_method}-GGUF",
allow_patterns=["*.gguf","*.md"],
token=hf_token
)
print("Uploaded successfully!")
shutil.rmtree(MODEL_NAME)
print("Folder cleaned up successfully!")
return (
f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
"llama.png",
)
# Create Gradio interface
iface = gr.Interface(
fn=process_model,
inputs=[
gr.Textbox(
lines=1,
label="Hub Model ID",
info="Model repo ID"
),
gr.Dropdown(
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
label="Quantization Method",
info="GGML quantisation type"
),
gr.Textbox(
lines=1,
label="Username",
info="Your Hugging Face username"
),
gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token"
)
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants!",
description="Create GGUF quants from any Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens.",
article="<p>Find your write token at <a href='https://huggingface.co/settings/tokens' target='_blank'>token settings</a></p>",
)
# Launch the interface
iface.launch(debug=True) |