omni-mini / app.py
freddyaboulton's picture
first response
d531709
raw
history blame
5.21 kB
import gradio as gr
from huggingface_hub import snapshot_download
from threading import Thread
import time
import base64
import numpy as np
import requests
import traceback
from dataclasses import dataclass
from pathlib import Path
import io
import wave
import tempfile
import librosa
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
from server import serve
repo_id = "gpt-omni/mini-omni"
snapshot_download(repo_id, local_dir="./checkpoint", revision="main")
IP='0.0.0.0'
PORT=60808
thread = Thread(target=serve, daemon=True)
thread.start()
API_URL = "http://0.0.0.0:60808/chat"
# recording parameters
IN_CHANNELS = 1
IN_RATE = 24000
IN_CHUNK = 1024
IN_SAMPLE_WIDTH = 2
VAD_STRIDE = 0.5
# playing parameters
OUT_CHANNELS = 1
OUT_RATE = 24000
OUT_SAMPLE_WIDTH = 2
OUT_CHUNK = 5760
OUT_CHUNK = 4096
OUT_RATE = 24000
OUT_CHANNELS = 1
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = np.frombuffer(ori_audio, dtype=np.int16)
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
if sr != sampling_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
if sr != sampling_rate:
# resample to original sampling rate
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
else:
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
print(msg)
return -1, ori_audio, round(time.time() - _st, 4)
def warm_up():
frames = b"\x00\x00" * 1024 * 2 # 1024 frames of 2 bytes each
dur, frames, tcost = run_vad(frames, 16000)
print(f"warm up done, time_cost: {tcost:.3f} s")
warm_up()
def determine_pause(stream: bytes, start_talking: bool) -> tuple[bool, bool]:
"""Take in the stream, determine if a pause happened"""
temp_audio = stream
if len(temp_audio) > IN_SAMPLE_WIDTH * IN_RATE * IN_CHANNELS * VAD_STRIDE:
dur_vad, _, time_vad = run_vad(temp_audio, IN_RATE)
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
if dur_vad > 0.2 and not start_talking:
start_talking = True
pause = False
return pause, start_talking
if dur_vad < 0.1 and start_talking:
print("pause detected")
return True, start_talking
return False, start_talking
return False, start_talking
def speaking(total_frames: bytes):
audio_buffer = io.BytesIO()
wf = wave.open(audio_buffer, "wb")
wf.setnchannels(IN_CHANNELS)
wf.setsampwidth(IN_SAMPLE_WIDTH)
wf.setframerate(IN_RATE)
dur = len(total_frames) / (IN_RATE * IN_CHANNELS * IN_SAMPLE_WIDTH)
print(f"Speaking... recorded audio duration: {dur:.3f} s")
wf.writeframes(total_frames)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
with open(tmpfile.name, "wb") as f:
f.write(audio_buffer.getvalue())
audio_bytes = audio_buffer.getvalue()
base64_encoded = str(base64.b64encode(audio_bytes), encoding="utf-8")
files = {"audio": base64_encoded}
with requests.post(API_URL, json=files, stream=True) as response:
try:
for chunk in response.iter_content(chunk_size=OUT_CHUNK):
if chunk:
yield chunk
# # Convert chunk to numpy array
# output_audio_bytes += chunk
# audio_data = np.frombuffer(chunk, dtype=np.int8)
# # Play audio
# stream.write(audio_data)
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
wf.close()
@dataclass
class AppState:
start_talking: bool = False
stream: bytes = b""
pause_detected: bool = False
def process_audio(audio: str, state: AppState):
state.stream += Path(audio).read_bytes()
pause_detected, start_talking = determine_pause(state.stream, state.pause_detected)
state.pause_detected = pause_detected
state.start_talking = start_talking
if not state.pause_detected:
yield None, state
for out_bytes in speaking(state.stream):
yield out_bytes, state
state = AppState()
yield None, state
with gr.Blocks() as demo:
with gr.Row():
input_audio = gr.Audio(label="Input Audio")
with gr.Row():
output_audio = gr.Audio(label="Output Audio")
state = gr.State(value=AppState())
input_audio.stream(process_audio, [input_audio, state], [output_audio, state],
stream_every=0.5, time_limit=30)
demo.launch()