|
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1'; |
|
import { AutoModel, AutoTokenizer } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1'; |
|
|
|
|
|
env.allowLocalModels = false; |
|
|
|
|
|
const status = document.getElementById('status'); |
|
const fileUpload = document.getElementById('upload'); |
|
const imageContainer = document.getElementById('container'); |
|
const example = document.getElementById('example'); |
|
|
|
const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg'; |
|
|
|
|
|
status.textContent = 'Loading model...'; |
|
|
|
|
|
let tokenizer = await AutoTokenizer.from_pretrained('Xenova/colbertv2.0'); |
|
let model = await AutoModel.from_pretrained('Xenova/colbertv2.0'); |
|
|
|
let inputs = await tokenizer('I love transformers!'); |
|
console.log(inputs); |
|
let { logits } = await model(inputs); |
|
|
|
const detector = await pipeline('feature-extraction','Xenova/colbertv2.0'); |
|
|
|
const output = await detector('This is a simple test.'); |
|
|
|
console.log(output); |
|
|
|
status.textContent = 'Ready'; |
|
|
|
example.addEventListener('click', (e) => { |
|
e.preventDefault(); |
|
detect(EXAMPLE_URL); |
|
}); |
|
|
|
fileUpload.addEventListener('change', function (e) { |
|
const file = e.target.files[0]; |
|
if (!file) { |
|
return; |
|
} |
|
|
|
const reader = new FileReader(); |
|
|
|
|
|
reader.onload = e2 => detect(e2.target.result); |
|
|
|
reader.readAsDataURL(file); |
|
}); |
|
|
|
|
|
|
|
async function detect(img) { |
|
imageContainer.innerHTML = ''; |
|
imageContainer.style.backgroundImage = `url(${img})`; |
|
|
|
status.textContent = 'Analysing...'; |
|
const output = await detector(img, { |
|
threshold: 0.5, |
|
percentage: true, |
|
}); |
|
status.textContent = ''; |
|
output.forEach(renderBox); |
|
} |
|
|
|
|
|
function renderBox({ box, label }) { |
|
const { xmax, xmin, ymax, ymin } = box; |
|
|
|
|
|
const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0); |
|
|
|
|
|
const boxElement = document.createElement('div'); |
|
boxElement.className = 'bounding-box'; |
|
Object.assign(boxElement.style, { |
|
borderColor: color, |
|
left: 100 * xmin + '%', |
|
top: 100 * ymin + '%', |
|
width: 100 * (xmax - xmin) + '%', |
|
height: 100 * (ymax - ymin) + '%', |
|
}) |
|
|
|
|
|
const labelElement = document.createElement('span'); |
|
labelElement.textContent = label; |
|
labelElement.className = 'bounding-box-label'; |
|
labelElement.style.backgroundColor = color; |
|
|
|
boxElement.appendChild(labelElement); |
|
imageContainer.appendChild(boxElement); |
|
} |
|
|